mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-19 18:18:57 -04:00
Update convert.py
This commit is contained in:
parent
b5d872ead0
commit
a26fca4a41
@ -1,14 +1,24 @@
|
||||
import os
|
||||
import shutil
|
||||
import logging
|
||||
from argparse import ArgumentParser
|
||||
from glob import glob
|
||||
from tqdm import tqdm, trange
|
||||
from pathlib import Path
|
||||
from typing import Dict, Tuple, List, Optional
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from safetensors.torch import safe_open, save_file
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
mapping = {
|
||||
# Type aliases
|
||||
TensorMapping = Dict[str, Tuple[str, Optional[int]]]
|
||||
|
||||
# Configuration mapping with type hints
|
||||
MAPPING: TensorMapping = {
|
||||
"embed_tokens": ("embed", 0),
|
||||
"input_layernorm": ("attn_norm", None),
|
||||
"post_attention_layernorm": ("ffn_norm", None),
|
||||
@ -29,68 +39,168 @@ mapping = {
|
||||
"scale": ("scale", None),
|
||||
}
|
||||
|
||||
def validate_paths(hf_ckpt_path: str, save_path: str) -> None:
|
||||
"""Validate input and output paths."""
|
||||
if not os.path.isdir(hf_ckpt_path):
|
||||
raise ValueError(f"Input directory {hf_ckpt_path} does not exist")
|
||||
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
if not os.access(save_path, os.W_OK):
|
||||
raise PermissionError(f"No write permission for output directory {save_path}")
|
||||
|
||||
def main(hf_ckpt_path, save_path, n_experts, mp):
|
||||
def process_tensor_name(name: str) -> str:
|
||||
"""Process and normalize tensor names."""
|
||||
# Remove 'model.' prefix if present
|
||||
if name.startswith("model."):
|
||||
name = name[len("model."):]
|
||||
|
||||
# Replace specific patterns
|
||||
replacements = {
|
||||
"self_attn": "attn",
|
||||
"mlp": "ffn",
|
||||
"weight_scale_inv": "scale",
|
||||
"e_score_correction_bias": "bias"
|
||||
}
|
||||
|
||||
for old, new in replacements.items():
|
||||
name = name.replace(old, new)
|
||||
|
||||
return name
|
||||
|
||||
def split_tensor(param: torch.Tensor, dim: Optional[int], mp: int, idx: int) -> torch.Tensor:
|
||||
"""Split tensor for model parallelism."""
|
||||
if dim is None:
|
||||
return param
|
||||
|
||||
if param.size(dim) % mp != 0:
|
||||
raise ValueError(f"Dimension {dim} of tensor with shape {param.shape} "
|
||||
f"is not divisible by model parallelism factor {mp}")
|
||||
|
||||
shard_size = param.size(dim) // mp
|
||||
return param.narrow(dim, idx * shard_size, shard_size).contiguous()
|
||||
|
||||
def process_checkpoint_files(
|
||||
hf_ckpt_path: str,
|
||||
mp: int,
|
||||
n_local_experts: int,
|
||||
state_dicts: List[Dict[str, torch.Tensor]]
|
||||
) -> None:
|
||||
"""Process all checkpoint files and populate state dictionaries."""
|
||||
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors")),
|
||||
desc="Processing checkpoint files"):
|
||||
try:
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
for name in tqdm(f.keys(), desc=f"Processing {os.path.basename(file_path)}", leave=False):
|
||||
if "model.layers.61" in name:
|
||||
logger.debug(f"Skipping layer 61 tensor: {name}")
|
||||
continue
|
||||
|
||||
param = f.get_tensor(name)
|
||||
processed_name = process_tensor_name(name)
|
||||
|
||||
key = processed_name.split(".")[-2]
|
||||
if key not in MAPPING:
|
||||
raise KeyError(f"Unexpected tensor key: {key} in tensor {name}")
|
||||
|
||||
new_key, dim = MAPPING[key]
|
||||
final_name = processed_name.replace(key, new_key)
|
||||
|
||||
for i in range(mp):
|
||||
if "experts" in final_name and "shared_experts" not in final_name:
|
||||
expert_idx = int(final_name.split(".")[-3])
|
||||
if not (i * n_local_experts <= expert_idx < (i + 1) * n_local_experts):
|
||||
continue
|
||||
|
||||
split_param = split_tensor(param, dim, mp, i)
|
||||
state_dicts[i][final_name] = split_param
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing file {file_path}: {str(e)}")
|
||||
raise
|
||||
|
||||
def save_output_files(
|
||||
state_dicts: List[Dict[str, torch.Tensor]],
|
||||
save_path: str,
|
||||
mp: int,
|
||||
hf_ckpt_path: str
|
||||
) -> None:
|
||||
"""Save processed state dictionaries and copy token files."""
|
||||
for i in tqdm(range(mp), desc="Saving output files"):
|
||||
output_file = os.path.join(save_path, f"model{i}-mp{mp}.safetensors")
|
||||
save_file(state_dicts[i], output_file, metadata={"format": "pt"})
|
||||
|
||||
# Copy token-related files
|
||||
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
||||
try:
|
||||
shutil.copy(file_path, os.path.join(save_path, os.path.basename(file_path)))
|
||||
except IOError as e:
|
||||
logger.error(f"Error copying file {file_path}: {str(e)}")
|
||||
|
||||
def main(
|
||||
hf_ckpt_path: str,
|
||||
save_path: str,
|
||||
n_experts: int,
|
||||
mp: int
|
||||
) -> None:
|
||||
"""
|
||||
Converts and saves model checkpoint files into a specified format.
|
||||
|
||||
Convert and split model checkpoints for distributed training.
|
||||
|
||||
Args:
|
||||
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
|
||||
save_path (str): Path to the directory where the converted checkpoint files will be saved.
|
||||
n_experts (int): Total number of experts in the model.
|
||||
mp (int): Model parallelism factor.
|
||||
|
||||
Returns:
|
||||
None
|
||||
hf_ckpt_path: Path to HuggingFace format checkpoint directory
|
||||
save_path: Output directory for converted checkpoints
|
||||
n_experts: Total number of experts in the model
|
||||
mp: Model parallelism factor
|
||||
"""
|
||||
torch.set_num_threads(8)
|
||||
validate_paths(hf_ckpt_path, save_path)
|
||||
|
||||
if n_experts % mp != 0:
|
||||
raise ValueError(f"Number of experts {n_experts} must be divisible by model parallelism factor {mp}")
|
||||
|
||||
n_local_experts = n_experts // mp
|
||||
state_dicts = [{} for _ in range(mp)]
|
||||
|
||||
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
for name in f.keys():
|
||||
if "model.layers.61" in name:
|
||||
continue
|
||||
param: torch.Tensor = f.get_tensor(name)
|
||||
if name.startswith("model."):
|
||||
name = name[len("model."):]
|
||||
name = name.replace("self_attn", "attn")
|
||||
name = name.replace("mlp", "ffn")
|
||||
name = name.replace("weight_scale_inv", "scale")
|
||||
name = name.replace("e_score_correction_bias", "bias")
|
||||
key = name.split(".")[-2]
|
||||
assert key in mapping
|
||||
new_key, dim = mapping[key]
|
||||
name = name.replace(key, new_key)
|
||||
for i in range(mp):
|
||||
new_param = param
|
||||
if "experts" in name and "shared_experts" not in name:
|
||||
idx = int(name.split(".")[-3])
|
||||
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
|
||||
continue
|
||||
elif dim is not None:
|
||||
assert param.size(dim) % mp == 0
|
||||
shard_size = param.size(dim) // mp
|
||||
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
|
||||
state_dicts[i][name] = new_param
|
||||
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
|
||||
for i in trange(mp):
|
||||
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
|
||||
|
||||
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
||||
new_file_path = os.path.join(save_path, os.path.basename(file_path))
|
||||
shutil.copyfile(file_path, new_file_path)
|
||||
|
||||
|
||||
process_checkpoint_files(hf_ckpt_path, mp, n_local_experts, state_dicts)
|
||||
save_output_files(state_dicts, save_path, mp, hf_ckpt_path)
|
||||
|
||||
logger.info(f"Successfully converted checkpoints. Output saved to {save_path}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--hf-ckpt-path", type=str, required=True)
|
||||
parser.add_argument("--save-path", type=str, required=True)
|
||||
parser.add_argument("--n-experts", type=int, required=True)
|
||||
parser.add_argument("--model-parallel", type=int, required=True)
|
||||
parser = ArgumentParser(description="Convert HuggingFace checkpoints to distributed format")
|
||||
parser.add_argument(
|
||||
"--hf-ckpt-path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to input HuggingFace checkpoint directory"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Output directory for converted checkpoints"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--n-experts",
|
||||
type=int,
|
||||
required=True,
|
||||
help="Total number of experts in the model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-parallel",
|
||||
type=int,
|
||||
required=True,
|
||||
dest="model_parallel",
|
||||
help="Model parallelism factor"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
assert args.n_experts % args.model_parallel == 0
|
||||
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
|
||||
|
||||
try:
|
||||
main(
|
||||
args.hf_ckpt_path,
|
||||
args.save_path,
|
||||
args.n_experts,
|
||||
args.model_parallel
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Conversion failed: {str(e)}")
|
||||
raise
|
||||
|
Loading…
Reference in New Issue
Block a user