Refactor checkpoint conversion script for improved readability and efficiency

This commit is contained in:
Tanmay Das 2025-02-10 18:40:56 -05:00 committed by GitHub
parent 2f7b80eece
commit 897291478c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -2,6 +2,7 @@ import os
import shutil
from argparse import ArgumentParser
from glob import glob
from pathlib import Path
from tqdm import tqdm, trange
import torch
@ -43,46 +44,55 @@ def main(hf_ckpt_path, save_path, n_experts, mp):
Returns:
None
"""
assert mp > 0, "Model parallelism (mp) must be greater than 0"
torch.set_num_threads(8)
n_local_experts = n_experts // mp
state_dicts = [{} for _ in range(mp)]
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
hf_ckpt_path = Path(hf_ckpt_path)
save_path = Path(save_path)
save_path.mkdir(parents=True, exist_ok=True)
for file_path in tqdm(hf_ckpt_path.glob("*.safetensors")):
with safe_open(file_path, framework="pt", device="cpu") as f:
for name in f.keys():
if "model.layers.61" in name:
continue
param: torch.Tensor = f.get_tensor(name)
if name.startswith("model."):
name = name[len("model."):]
name = name.replace("self_attn", "attn")
name = name.replace("mlp", "ffn")
name = name.replace("weight_scale_inv", "scale")
name = name.replace("e_score_correction_bias", "bias")
name = (
name.replace("self_attn", "attn")
.replace("mlp", "ffn")
.replace("weight_scale_inv", "scale")
.replace("e_score_correction_bias", "bias")
)
key = name.split(".")[-2]
assert key in mapping, f"Key {key} not found in mapping"
new_key, dim = mapping[key]
name = name.replace(key, new_key)
for i in range(mp):
new_param = param
if "experts" in name and "shared_experts" not in name:
idx = int(name.split(".")[-3])
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
continue
elif dim is not None:
assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
shard_size = param.size(dim) // mp
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
state_dicts[i][name] = new_param
os.makedirs(save_path, exist_ok=True)
if "experts" in name and "shared_experts" not in name:
idx = int(name.split(".")[-3])
target_index = idx // n_local_experts
if target_index < mp:
state_dicts[target_index][name] = param
elif dim is not None:
assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
shard_size = param.size(dim) // mp
for i in range(mp):
state_dicts[i][name] = param[:, i * shard_size : (i + 1) * shard_size] if dim == 1 else param[i * shard_size : (i + 1) * shard_size]
for i in trange(mp):
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
save_file(state_dicts[i], save_path / f"model{i}-mp{mp}.safetensors")
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
new_file_path = os.path.join(save_path, os.path.basename(file_path))
shutil.copyfile(file_path, new_file_path)
for file_path in hf_ckpt_path.glob("*token*"):
shutil.copyfile(file_path, save_path / file_path.name)
if __name__ == "__main__":
@ -92,5 +102,7 @@ if __name__ == "__main__":
parser.add_argument("--n-experts", type=int, required=True)
parser.add_argument("--model-parallel", type=int, required=True)
args = parser.parse_args()
assert args.n_experts % args.model_parallel == 0, "Number of experts must be divisible by model parallelism"
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)