mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-04-19 10:08:59 -04:00
Merge 630769360a
into 4cc6253d5c
This commit is contained in:
commit
80bb70e43c
97
inference/bf16_cast_fp8.py
Normal file
97
inference/bf16_cast_fp8.py
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
import os
|
||||||
|
import json
|
||||||
|
import re
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from glob import glob
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from safetensors.torch import load_file, save_file
|
||||||
|
|
||||||
|
from kernel import weight_quant
|
||||||
|
|
||||||
|
# Layers that should not be quantized (remain in BF16)
|
||||||
|
SKIP_QUANT_PATTERNS = [
|
||||||
|
r".*\.layernorm\.weight$",
|
||||||
|
r".*\.norm\.weight$",
|
||||||
|
r".*input_layernorm\.weight$",
|
||||||
|
r".*post_attention_layernorm\.weight$",
|
||||||
|
r".*\.kv_a_layernorm\.weight$",
|
||||||
|
r".*\.q_a_layernorm\.weight$",
|
||||||
|
r".*\.embed_tokens\.weight$",
|
||||||
|
r".*\.head\.weight$",
|
||||||
|
r".*lm_head\.weight$",
|
||||||
|
r".*\.eh_proj\.weight$",
|
||||||
|
r".*\.gate\.e_score_correction_bias$",
|
||||||
|
r".*\.gate\.weight$"
|
||||||
|
]
|
||||||
|
|
||||||
|
def should_skip_quantization(weight_name):
|
||||||
|
"""Check if weight name matches any pattern in the skip list"""
|
||||||
|
return any(re.match(pattern, weight_name) for pattern in SKIP_QUANT_PATTERNS)
|
||||||
|
|
||||||
|
def main(bf16_path, fp8_path):
|
||||||
|
torch.set_default_dtype(torch.bfloat16)
|
||||||
|
os.makedirs(fp8_path, exist_ok=True)
|
||||||
|
|
||||||
|
# Get list of safetensor files
|
||||||
|
safetensor_files = list(glob(os.path.join(bf16_path, "*.safetensors")))
|
||||||
|
safetensor_files.sort()
|
||||||
|
|
||||||
|
# Load model index if it exists
|
||||||
|
model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
|
||||||
|
if os.path.exists(model_index_file):
|
||||||
|
with open(model_index_file, "r") as f:
|
||||||
|
model_index = json.load(f)
|
||||||
|
weight_map = model_index["weight_map"]
|
||||||
|
else:
|
||||||
|
# Create a new weight map if there's no index file
|
||||||
|
weight_map = {}
|
||||||
|
|
||||||
|
# Cache for loaded safetensor files
|
||||||
|
loaded_files = {}
|
||||||
|
fp8_weight_names = []
|
||||||
|
|
||||||
|
for safetensor_file in tqdm(safetensor_files):
|
||||||
|
file_name = os.path.basename(safetensor_file)
|
||||||
|
current_state_dict = load_file(safetensor_file, device="cuda")
|
||||||
|
loaded_files[file_name] = current_state_dict
|
||||||
|
|
||||||
|
new_state_dict = {}
|
||||||
|
for weight_name, weight in current_state_dict.items():
|
||||||
|
# Skip weights that should not be quantized
|
||||||
|
if should_skip_quantization(weight_name) or weight.dim() != 2:
|
||||||
|
new_state_dict[weight_name] = weight
|
||||||
|
else:
|
||||||
|
# Quantize weights to FP8
|
||||||
|
fp8_weight, scale_inv = weight_quant(weight)
|
||||||
|
new_state_dict[weight_name] = fp8_weight
|
||||||
|
scale_inv_name = f"{weight_name}_scale_inv"
|
||||||
|
new_state_dict[scale_inv_name] = scale_inv
|
||||||
|
fp8_weight_names.append(weight_name)
|
||||||
|
|
||||||
|
# Update weight map
|
||||||
|
if weight_name in weight_map:
|
||||||
|
weight_map[scale_inv_name] = file_name
|
||||||
|
|
||||||
|
new_safetensor_file = os.path.join(fp8_path, file_name)
|
||||||
|
save_file(new_state_dict, new_safetensor_file)
|
||||||
|
|
||||||
|
# Memory management: keep only the 2 most recently used files
|
||||||
|
if len(loaded_files) > 2:
|
||||||
|
oldest_file = next(iter(loaded_files))
|
||||||
|
del loaded_files[oldest_file]
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
# Update model index
|
||||||
|
new_model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
|
||||||
|
with open(new_model_index_file, "w") as f:
|
||||||
|
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--input-bf16-hf-path", type=str, required=True)
|
||||||
|
parser.add_argument("--output-fp8-hf-path", type=str, required=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args.input_bf16_hf_path, args.output_fp8_hf_path)
|
@ -105,6 +105,64 @@ def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> t
|
|||||||
return y
|
return y
|
||||||
|
|
||||||
|
|
||||||
|
@triton.jit
|
||||||
|
def weight_quant_kernel(x_ptr, y_ptr, s_ptr, M, N, BLOCK_SIZE: tl.constexpr):
|
||||||
|
"""
|
||||||
|
Quantizes weights in blocks and computes scaling factors for each block.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x_ptr (tl.pointer): Pointer to the input weights tensor.
|
||||||
|
y_ptr (tl.pointer): Pointer to the output buffer for quantized weights.
|
||||||
|
s_ptr (tl.pointer): Pointer to the output buffer for scaling factors.
|
||||||
|
M (int): Number of rows in the weight matrix.
|
||||||
|
N (int): Number of columns in the weight matrix.
|
||||||
|
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
None
|
||||||
|
"""
|
||||||
|
pid_m = tl.program_id(axis=0)
|
||||||
|
pid_n = tl.program_id(axis=1)
|
||||||
|
n = tl.cdiv(N, BLOCK_SIZE)
|
||||||
|
offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||||
|
offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
||||||
|
offs = offs_m[:, None] * N + offs_n[None, :]
|
||||||
|
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
|
||||||
|
x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
|
||||||
|
max_val = tl.max(tl.abs(x))
|
||||||
|
s = max_val / 448.0 # Same scaling as in act_quant
|
||||||
|
y = x / s
|
||||||
|
y = y.to(y_ptr.dtype.element_ty)
|
||||||
|
tl.store(y_ptr + offs, y, mask=mask)
|
||||||
|
tl.store(s_ptr + pid_m * n + pid_n, s)
|
||||||
|
|
||||||
|
|
||||||
|
def weight_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
|
"""
|
||||||
|
Quantizes a weight tensor using block-wise quantization.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (torch.Tensor): The input weight tensor of shape (M, N) to be quantized.
|
||||||
|
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
|
||||||
|
- The quantized tensor with dtype `torch.float8_e4m3fn`.
|
||||||
|
- A tensor of scaling factors with dtype `torch.float32`.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
AssertionError: If `x` is not contiguous or if its dimensions are not 2.
|
||||||
|
"""
|
||||||
|
assert x.is_contiguous()
|
||||||
|
assert x.dim() == 2
|
||||||
|
M, N = x.size()
|
||||||
|
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
|
||||||
|
s = x.new_empty(triton.cdiv(M, block_size), triton.cdiv(N, block_size), dtype=torch.float32)
|
||||||
|
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
|
||||||
|
weight_quant_kernel[grid](x, y, s, M, N, BLOCK_SIZE=block_size)
|
||||||
|
return y, s
|
||||||
|
|
||||||
|
|
||||||
fp8_gemm_configs = [
|
fp8_gemm_configs = [
|
||||||
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
|
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
|
||||||
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
|
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
|
||||||
|
Loading…
Reference in New Issue
Block a user