diff --git a/inference/generate.py b/inference/generate.py index 7e9bffe..b9718e9 100644 --- a/inference/generate.py +++ b/inference/generate.py @@ -24,7 +24,27 @@ def sample(logits, temperature: float = 1.0): """ logits = logits / max(temperature, 1e-5) probs = torch.softmax(logits, dim=-1) - return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) + return torch.multinomial(probs, 1) # Usando uma distribuição de probabilidade + + +def init_distributed(rank: int, world_size: int, local_rank: int): + """ + Initialize the distributed process group and set device configurations. + + Args: + rank (int): The rank of the current process. + world_size (int): Total number of processes. + local_rank (int): The local rank for multi-GPU configurations. + """ + if world_size > 1: + dist.init_process_group("nccl") + global print + if rank != 0: + print = lambda *_, **__: None + torch.cuda.set_device(local_rank) + torch.set_default_dtype(torch.bfloat16) + torch.set_num_threads(8) + torch.manual_seed(965) @torch.inference_mode() @@ -100,20 +120,17 @@ def main( world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) local_rank = int(os.getenv("LOCAL_RANK", "0")) - if world_size > 1: - dist.init_process_group("nccl") - global print - if rank != 0: - print = lambda *_, **__: None - torch.cuda.set_device(local_rank) - torch.set_default_dtype(torch.bfloat16) - torch.set_num_threads(8) - torch.manual_seed(965) + + # Initialize distributed configuration + init_distributed(rank, world_size, local_rank) + with open(config) as f: args = ModelArgs(**json.load(f)) print(args) + with torch.device("cuda"): model = Transformer(args) + tokenizer = AutoTokenizer.from_pretrained(ckpt_path) tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0]) load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors")) @@ -171,7 +188,7 @@ if __name__ == "__main__": --temperature (float, optional): Temperature for sampling. Defaults to 0.2. Raises: - AssertionError: If neither input-file nor interactive mode is specified. + ValueError: If neither input-file nor interactive mode is specified. """ parser = ArgumentParser() parser.add_argument("--ckpt-path", type=str, required=True) @@ -181,5 +198,16 @@ if __name__ == "__main__": parser.add_argument("--max-new-tokens", type=int, default=200) parser.add_argument("--temperature", type=float, default=0.2) args = parser.parse_args() - assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified" - main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature) + + # Validate input + if not (args.input_file or args.interactive): + raise ValueError("You must specify either --input-file or enable --interactive mode.") + + main( + args.ckpt_path, + args.config, + args.input_file, + args.interactive, + args.max_new_tokens, + args.temperature, + ) diff --git a/inference/kernel.py b/inference/kernel.py index ae907ad..2ac8bcd 100644 --- a/inference/kernel.py +++ b/inference/kernel.py @@ -1,191 +1,134 @@ -from typing import Tuple - import torch import triton import triton.language as tl -from triton import Config @triton.jit -def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr): +def weight_dequant_kernel( + q_ptr, s_ptr, out_ptr, M, N, + stride_qm, stride_qn, stride_sm, stride_sn, + stride_om, stride_on, + BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr +): """ - Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`. - - Args: - x_ptr (triton.Pointer): Pointer to the input tensor. - y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored. - s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored. - BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance. - - Returns: - None + Triton kernel for FP8 weight dequantization. + out = q * s """ pid = tl.program_id(axis=0) - offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) - x = tl.load(x_ptr + offs).to(tl.float32) - s = tl.max(tl.abs(x)) / 448. - y = x / s - y = y.to(y_ptr.dtype.element_ty) - tl.store(y_ptr + offs, y) - tl.store(s_ptr + pid, s) + num_blocks_n = tl.cdiv(N, BLOCK_SIZE_N) + pid_m = pid // num_blocks_n + pid_n = pid % num_blocks_n - -def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]: - """ - Quantizes the input tensor `x` using block-wise quantization. - - Args: - x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`. - block_size (int, optional): The size of the blocks to be used for quantization. Default is 128. - - Returns: - Tuple[torch.Tensor, torch.Tensor]: A tuple containing: - - The quantized tensor with dtype `torch.float8_e4m3fn`. - - A tensor of scaling factors with dtype `torch.float32`. - """ - assert x.is_contiguous(), 'Input tensor must be contiguous' - assert x.size(-1) % block_size == 0, f'Last dimension size must be divisible by block_size (block_size={block_size})' - y = torch.empty_like(x, dtype=torch.float8_e4m3fn) - s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32) - grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), ) - act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size) - return y, s - - -@triton.jit -def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr): - """ - Dequantizes weights using the provided scaling factors and stores the result. - - Args: - x_ptr (tl.pointer): Pointer to the quantized weights. - s_ptr (tl.pointer): Pointer to the scaling factors. - y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights. - M (int): Number of rows in the weight matrix. - N (int): Number of columns in the weight matrix. - BLOCK_SIZE (tl.constexpr): Size of the block for tiling. - - Returns: - None - """ - pid_m = tl.program_id(axis=0) - pid_n = tl.program_id(axis=1) - n = tl.cdiv(N, BLOCK_SIZE) - offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) - offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) - offs = offs_m[:, None] * N + offs_n[None, :] - mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) - x = tl.load(x_ptr + offs, mask=mask).to(tl.float32) - s = tl.load(s_ptr + pid_m * n + pid_n) - y = x * s - tl.store(y_ptr + offs, y, mask=mask) - - -def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor: - """ - Dequantizes the given weight tensor using the provided scale tensor. - - Args: - x (torch.Tensor): The quantized weight tensor of shape (M, N). - s (torch.Tensor): The scale tensor of shape (M, N). - block_size (int, optional): The block size to use for dequantization. Defaults to 128. - - Returns: - torch.Tensor: The dequantized weight tensor of the same shape as `x`. - - Raises: - AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2. - """ - assert x.is_contiguous() and s.is_contiguous(), 'Input tensors must be contiguous' - assert x.dim() == 2 and s.dim() == 2, 'Input tensors must have 2 dimensions' - M, N = x.size() - y = torch.empty_like(x, dtype=torch.get_default_dtype()) - grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE'])) - weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size) - return y - - -fp8_gemm_configs = [ - Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8) - for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6] -] - -@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K']) -@triton.jit -def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr, - a_s_ptr, b_s_ptr, - M, N: tl.constexpr, K: tl.constexpr, - BLOCK_SIZE_M: tl.constexpr, - BLOCK_SIZE_N: tl.constexpr, - BLOCK_SIZE_K: tl.constexpr): - """ - Performs a matrix multiplication operation on FP8 matrices with scaling factors. - - Args: - a_ptr (tl.tensor): Pointer to the first input matrix A. - b_ptr (tl.tensor): Pointer to the second input matrix B. - c_ptr (tl.tensor): Pointer to the output matrix C. - a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A. - b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B. - M (int): Number of rows in matrix A and C. - N (tl.constexpr): Number of columns in matrix B and C. - K (tl.constexpr): Number of columns in matrix A and rows in matrix B. - BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension. - BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension. - BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension. - - Returns: - None - """ - pid_m = tl.program_id(axis=0) - pid_n = tl.program_id(axis=1) - k = tl.cdiv(K, BLOCK_SIZE_K) - offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M - offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N - offs_k = tl.arange(0, BLOCK_SIZE_K) - a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :] - b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None] - a_s_ptrs = a_s_ptr + offs_m * k - b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k - - accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) - for i in range(k): - a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0) - b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0) - a_s = tl.load(a_s_ptrs) - b_s = tl.load(b_s_ptrs) - accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :] - a_ptrs += BLOCK_SIZE_K - b_ptrs += BLOCK_SIZE_K - a_s_ptrs += 1 - b_s_ptrs += 1 - c = accumulator.to(c_ptr.dtype.element_ty) offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) - c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :] - mask = (offs_m[:, None] < M) & (offs_n[None, :] < N) - tl.store(c_ptrs, c, mask=mask) + + mask_m = offs_m < M + mask_n = offs_n < N + + q_ptrs = q_ptr + offs_m[:, None] * stride_qm + offs_n[None, :] * stride_qn + s_ptrs = s_ptr + offs_m[:, None] * stride_sm + offs_n[None, :] * stride_sn + out_ptrs = out_ptr + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on + + q = tl.load(q_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=0) + s = tl.load(s_ptrs, mask=mask_m[:, None] & mask_n[None, :], other=1) + + out = q.to(tl.float32) * s.to(tl.float32) + tl.store(out_ptrs, out, mask=mask_m[:, None] & mask_n[None, :]) -def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor): +@triton.jit +def fp8_gemm_kernel( + a_ptr, b_ptr, c_ptr, M, N, K, + stride_am, stride_ak, stride_bk, stride_bn, + stride_cm, stride_cn, + BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr +): """ - Perform a matrix multiplication using FP8 precision. + Triton kernel for FP8 GEMM (General Matrix Multiply) + c = a @ b + """ + pid = tl.program_id(axis=0) + num_blocks_n = tl.cdiv(N, BLOCK_SIZE_N) + pid_m = pid // num_blocks_n + pid_n = pid % num_blocks_n + + offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) + offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) + mask_m = offs_m < M + mask_n = offs_n < N + + c_ptrs = c_ptr + offs_m[:, None] * stride_cm + offs_n[None, :] * stride_cn + acc = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) + + for k in range(0, K, BLOCK_SIZE_K): + offs_k = k + tl.arange(0, BLOCK_SIZE_K) + mask_k = offs_k < K + + a_ptrs = a_ptr + offs_m[:, None] * stride_am + offs_k[None, :] * stride_ak + b_ptrs = b_ptr + offs_k[:, None] * stride_bk + offs_n[None, :] * stride_bn + + a = tl.load(a_ptrs, mask=mask_m[:, None] & mask_k[None, :], other=0) + b = tl.load(b_ptrs, mask=mask_k[:, None] & mask_n[None, :], other=0) + + acc += tl.dot(a, b) + + tl.store(c_ptrs, acc, mask=mask_m[:, None] & mask_n[None, :]) + + +def dequantize_weights(q_weight: torch.Tensor, scale: torch.Tensor, block_size=16) -> torch.Tensor: + """ + Dequantizes FP8 weights using provided scaling factors. Args: - a (torch.Tensor): The first input matrix, must be contiguous. - a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous. - b (torch.Tensor): The second input matrix, must be contiguous. - b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous. + q_weight (torch.Tensor): Quantized weight matrix (e.g. float8). + scale (torch.Tensor): Scaling factors. + block_size (int): Block size used in the kernel. Returns: - torch.Tensor: The result of the matrix multiplication. + torch.Tensor: Dequantized weight matrix (float32). """ - assert a.is_contiguous() and b.is_contiguous(), 'Input tensors must be contiguous' - assert a_s.is_contiguous() and b_s.is_contiguous(), 'Scaling factor tensors must be contiguous' - K = a.size(-1) - M = a.numel() // K - N = b.size(0) - c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype()) - grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N'])) - fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K) - return c + assert q_weight.shape == scale.shape, "Mismatched shapes between quantized weights and scales." + + M, N = q_weight.shape + output = torch.empty_like(q_weight, dtype=torch.float32) + + grid = (triton.cdiv(M, block_size) * triton.cdiv(N, block_size),) + weight_dequant_kernel[grid]( + q_weight, scale, output, + M, N, + q_weight.stride(0), q_weight.stride(1), + scale.stride(0), scale.stride(1), + output.stride(0), output.stride(1), + block_size, block_size + ) + return output + + +def fp8_gemm(a: torch.Tensor, b: torch.Tensor, block_size=16) -> torch.Tensor: + """ + Performs GEMM on FP8 dequantized matrices using Triton. + + Args: + a (torch.Tensor): Left matrix (float32). + b (torch.Tensor): Right matrix (float32). + block_size (int): Block size for tiling. + + Returns: + torch.Tensor: Output matrix (float32). + """ + assert a.shape[1] == b.shape[0], "Incompatible matrix dimensions." + + M, K = a.shape + _, N = b.shape + output = torch.empty((M, N), dtype=torch.float32) + + grid = (triton.cdiv(M, block_size) * triton.cdiv(N, block_size),) + fp8_gemm_kernel[grid]( + a, b, output, + M, N, K, + a.stride(0), a.stride(1), + b.stride(0), b.stride(1), + output.stride(0), output.stride(1), + block_size, block_size, block_size + ) + return output