mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-02-22 21:58:58 -05:00
Refactored convert.py
This commit is contained in:
parent
b5d872ead0
commit
70ff909fdc
@ -2,13 +2,19 @@ import os
|
||||
import shutil
|
||||
from argparse import ArgumentParser
|
||||
from glob import glob
|
||||
from tqdm import tqdm, trange
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from safetensors.torch import safe_open, save_file
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
# Constants and type definitions
|
||||
TensorMapping = Dict[str, Tuple[str, Optional[int]]]
|
||||
StateDict = Dict[str, torch.Tensor]
|
||||
|
||||
mapping = {
|
||||
# Define mapping as a constant at module level
|
||||
TENSOR_MAPPING: TensorMapping = {
|
||||
"embed_tokens": ("embed", 0),
|
||||
"input_layernorm": ("attn_norm", None),
|
||||
"post_attention_layernorm": ("ffn_norm", None),
|
||||
@ -29,68 +35,144 @@ mapping = {
|
||||
"scale": ("scale", None),
|
||||
}
|
||||
|
||||
|
||||
def main(hf_ckpt_path, save_path, n_experts, mp):
|
||||
def process_tensor_name(name: str) -> str:
|
||||
"""
|
||||
Converts and saves model checkpoint files into a specified format.
|
||||
Process tensor name by removing prefixes and replacing common patterns.
|
||||
|
||||
Args:
|
||||
hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
|
||||
save_path (str): Path to the directory where the converted checkpoint files will be saved.
|
||||
n_experts (int): Total number of experts in the model.
|
||||
mp (int): Model parallelism factor.
|
||||
name: Original tensor name
|
||||
|
||||
Returns:
|
||||
None
|
||||
Processed tensor name
|
||||
"""
|
||||
if name.startswith("model."):
|
||||
name = name[len("model."):]
|
||||
|
||||
replacements = {
|
||||
"self_attn": "attn",
|
||||
"mlp": "ffn",
|
||||
"weight_scale_inv": "scale",
|
||||
"e_score_correction_bias": "bias"
|
||||
}
|
||||
|
||||
for old, new in replacements.items():
|
||||
name = name.replace(old, new)
|
||||
|
||||
return name
|
||||
|
||||
def shard_tensor(param: torch.Tensor, mp_idx: int, mp_count: int, dim: int) -> torch.Tensor:
|
||||
"""
|
||||
Shard a tensor along specified dimension for model parallelism.
|
||||
|
||||
Args:
|
||||
param: Input tensor to shard
|
||||
mp_idx: Index of current model parallel rank
|
||||
mp_count: Total number of model parallel ranks
|
||||
dim: Dimension along which to shard
|
||||
|
||||
Returns:
|
||||
Sharded tensor slice
|
||||
"""
|
||||
if param.size(dim) % mp_count != 0:
|
||||
raise ValueError(f"Tensor size {param.size(dim)} not divisible by mp_count {mp_count}")
|
||||
|
||||
shard_size = param.size(dim) // mp_count
|
||||
return param.narrow(dim, mp_idx * shard_size, shard_size).contiguous()
|
||||
|
||||
def convert_checkpoint(
|
||||
hf_ckpt_path: Union[str, Path],
|
||||
save_path: Union[str, Path],
|
||||
n_experts: int,
|
||||
mp: int
|
||||
) -> None:
|
||||
"""
|
||||
Convert and save model checkpoint files into a specified format.
|
||||
|
||||
Args:
|
||||
hf_ckpt_path: Path to input checkpoint directory
|
||||
save_path: Path to output directory for converted checkpoints
|
||||
n_experts: Total number of experts in model
|
||||
mp: Model parallelism factor
|
||||
|
||||
Raises:
|
||||
ValueError: If n_experts is not divisible by mp
|
||||
FileNotFoundError: If input path doesn't exist or contain safetensors
|
||||
"""
|
||||
if n_experts % mp != 0:
|
||||
raise ValueError(f"Number of experts ({n_experts}) must be divisible by model parallel size ({mp})")
|
||||
|
||||
hf_ckpt_path = Path(hf_ckpt_path)
|
||||
save_path = Path(save_path)
|
||||
|
||||
if not hf_ckpt_path.exists():
|
||||
raise FileNotFoundError(f"Checkpoint path {hf_ckpt_path} does not exist")
|
||||
|
||||
safetensor_files = list(hf_ckpt_path.glob("*.safetensors"))
|
||||
if not safetensor_files:
|
||||
raise FileNotFoundError(f"No safetensor files found in {hf_ckpt_path}")
|
||||
|
||||
torch.set_num_threads(8)
|
||||
n_local_experts = n_experts // mp
|
||||
state_dicts = [{} for _ in range(mp)]
|
||||
state_dicts: List[StateDict] = [{} for _ in range(mp)]
|
||||
|
||||
for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
|
||||
# Process each checkpoint file
|
||||
for file_path in tqdm(safetensor_files, desc="Processing checkpoint files"):
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
for name in f.keys():
|
||||
if "model.layers.61" in name:
|
||||
continue
|
||||
|
||||
param: torch.Tensor = f.get_tensor(name)
|
||||
if name.startswith("model."):
|
||||
name = name[len("model."):]
|
||||
name = name.replace("self_attn", "attn")
|
||||
name = name.replace("mlp", "ffn")
|
||||
name = name.replace("weight_scale_inv", "scale")
|
||||
name = name.replace("e_score_correction_bias", "bias")
|
||||
name = process_tensor_name(name)
|
||||
|
||||
key = name.split(".")[-2]
|
||||
assert key in mapping
|
||||
new_key, dim = mapping[key]
|
||||
if key not in TENSOR_MAPPING:
|
||||
raise ValueError(f"Unknown tensor key: {key}")
|
||||
|
||||
new_key, dim = TENSOR_MAPPING[key]
|
||||
name = name.replace(key, new_key)
|
||||
|
||||
# Distribute tensors across model parallel ranks
|
||||
for i in range(mp):
|
||||
new_param = param
|
||||
if "experts" in name and "shared_experts" not in name:
|
||||
idx = int(name.split(".")[-3])
|
||||
if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
|
||||
if not (i * n_local_experts <= idx < (i + 1) * n_local_experts):
|
||||
continue
|
||||
elif dim is not None:
|
||||
assert param.size(dim) % mp == 0
|
||||
shard_size = param.size(dim) // mp
|
||||
new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
|
||||
new_param = shard_tensor(param, i, mp, dim)
|
||||
state_dicts[i][name] = new_param
|
||||
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
# Save converted checkpoints
|
||||
save_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for i in trange(mp):
|
||||
save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
|
||||
for i in trange(mp, desc="Saving converted checkpoints"):
|
||||
output_file = save_path / f"model{i}-mp{mp}.safetensors"
|
||||
save_file(state_dicts[i], str(output_file))
|
||||
|
||||
for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
|
||||
new_file_path = os.path.join(save_path, os.path.basename(file_path))
|
||||
shutil.copyfile(file_path, new_file_path)
|
||||
# Copy tokenizer files
|
||||
for file_path in hf_ckpt_path.glob("*token*"):
|
||||
shutil.copyfile(file_path, save_path / file_path.name)
|
||||
|
||||
def main():
|
||||
"""Parse command line arguments and run the conversion."""
|
||||
parser = ArgumentParser(description="Convert HuggingFace checkpoints to custom format")
|
||||
parser.add_argument("--hf-ckpt-path", type=str, required=True,
|
||||
help="Path to input HuggingFace checkpoint directory")
|
||||
parser.add_argument("--save-path", type=str, required=True,
|
||||
help="Path to output directory for converted checkpoints")
|
||||
parser.add_argument("--n-experts", type=int, required=True,
|
||||
help="Total number of experts in the model")
|
||||
parser.add_argument("--model-parallel", type=int, required=True,
|
||||
help="Model parallelism factor")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
convert_checkpoint(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
|
||||
except Exception as e:
|
||||
print(f"Error during conversion: {str(e)}")
|
||||
raise
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--hf-ckpt-path", type=str, required=True)
|
||||
parser.add_argument("--save-path", type=str, required=True)
|
||||
parser.add_argument("--n-experts", type=int, required=True)
|
||||
parser.add_argument("--model-parallel", type=int, required=True)
|
||||
args = parser.parse_args()
|
||||
assert args.n_experts % args.model_parallel == 0
|
||||
main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
|
||||
main()
|
Loading…
Reference in New Issue
Block a user