This commit is contained in:
Nodoubtz 2025-05-10 13:38:19 +00:00 committed by GitHub
commit 6c098263e2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
13 changed files with 706 additions and 0 deletions

View File

@ -0,0 +1,4 @@
{
"image": "mcr.microsoft.com/devcontainers/universal:2",
"features": {}
}

122
.github/workflows/alibabacloud.yml vendored Normal file
View File

@ -0,0 +1,122 @@
# This workflow will build and push a new container image to Alibaba Cloud Container Registry (ACR),
# and then will deploy it to Alibaba Cloud Container Service for Kubernetes (ACK), when there is a push to the "main" branch.
#
# To use this workflow, you will need to complete the following set-up steps:
#
# 1. Create an ACR repository to store your container images.
# You can use ACR EE instance for more security and better performance.
# For instructions see https://www.alibabacloud.com/help/doc-detail/142168.htm
#
# 2. Create an ACK cluster to run your containerized application.
# You can use ACK Pro cluster for more security and better performance.
# For instructions see https://www.alibabacloud.com/help/doc-detail/95108.htm
#
# 3. Store your AccessKey pair in GitHub Actions secrets named `ACCESS_KEY_ID` and `ACCESS_KEY_SECRET`.
# For instructions on setting up secrets see: https://developer.github.com/actions/managing-workflows/storing-secrets/
#
# 4. Change the values for the REGION_ID, REGISTRY, NAMESPACE, IMAGE, ACK_CLUSTER_ID, and ACK_DEPLOYMENT_NAME.
#
name: Build and Deploy to ACK
on:
push:
branches: [ "main" ]
# Environment variables available to all jobs and steps in this workflow.
env:
REGION_ID: cn-hangzhou
REGISTRY: registry.cn-hangzhou.aliyuncs.com
NAMESPACE: namespace
IMAGE: repo
TAG: ${{ github.sha }}
ACK_CLUSTER_ID: clusterID
ACK_DEPLOYMENT_NAME: nginx-deployment
ACR_EE_REGISTRY: myregistry.cn-hangzhou.cr.aliyuncs.com
ACR_EE_INSTANCE_ID: instanceID
ACR_EE_NAMESPACE: namespace
ACR_EE_IMAGE: repo
ACR_EE_TAG: ${{ github.sha }}
permissions:
contents: read
jobs:
build:
runs-on: ubuntu-latest
environment: production
steps:
- name: Checkout
uses: actions/checkout@v4
# 1.1 Login to ACR
- name: Login to ACR with the AccessKey pair
uses: aliyun/acr-login@v1
with:
region-id: "${{ env.REGION_ID }}"
access-key-id: "${{ secrets.ACCESS_KEY_ID }}"
access-key-secret: "${{ secrets.ACCESS_KEY_SECRET }}"
# 1.2 Build and push image to ACR
- name: Build and push image to ACR
run: |
docker build --tag "$REGISTRY/$NAMESPACE/$IMAGE:$TAG" .
docker push "$REGISTRY/$NAMESPACE/$IMAGE:$TAG"
# 1.3 Scan image in ACR
- name: Scan image in ACR
uses: aliyun/acr-scan@v1
with:
region-id: "${{ env.REGION_ID }}"
access-key-id: "${{ secrets.ACCESS_KEY_ID }}"
access-key-secret: "${{ secrets.ACCESS_KEY_SECRET }}"
repository: "${{ env.NAMESPACE }}/${{ env.IMAGE }}"
tag: "${{ env.TAG }}"
# 2.1 (Optional) Login to ACR EE
- uses: actions/checkout@v4
- name: Login to ACR EE with the AccessKey pair
uses: aliyun/acr-login@v1
with:
login-server: "https://${{ env.ACR_EE_REGISTRY }}"
region-id: "${{ env.REGION_ID }}"
access-key-id: "${{ secrets.ACCESS_KEY_ID }}"
access-key-secret: "${{ secrets.ACCESS_KEY_SECRET }}"
instance-id: "${{ env.ACR_EE_INSTANCE_ID }}"
# 2.2 (Optional) Build and push image ACR EE
- name: Build and push image to ACR EE
run: |
docker build -t "$ACR_EE_REGISTRY/$ACR_EE_NAMESPACE/$ACR_EE_IMAGE:$TAG" .
docker push "$ACR_EE_REGISTRY/$ACR_EE_NAMESPACE/$ACR_EE_IMAGE:$TAG"
# 2.3 (Optional) Scan image in ACR EE
- name: Scan image in ACR EE
uses: aliyun/acr-scan@v1
with:
region-id: "${{ env.REGION_ID }}"
access-key-id: "${{ secrets.ACCESS_KEY_ID }}"
access-key-secret: "${{ secrets.ACCESS_KEY_SECRET }}"
instance-id: "${{ env.ACR_EE_INSTANCE_ID }}"
repository: "${{ env.ACR_EE_NAMESPACE}}/${{ env.ACR_EE_IMAGE }}"
tag: "${{ env.ACR_EE_TAG }}"
# 3.1 Set ACK context
- name: Set K8s context
uses: aliyun/ack-set-context@v1
with:
access-key-id: "${{ secrets.ACCESS_KEY_ID }}"
access-key-secret: "${{ secrets.ACCESS_KEY_SECRET }}"
cluster-id: "${{ env.ACK_CLUSTER_ID }}"
# 3.2 Deploy the image to the ACK cluster
- name: Set up Kustomize
run: |-
curl -s "https://raw.githubusercontent.com/kubernetes-sigs/kustomize/master/hack/install_kustomize.sh" | bash /dev/stdin 3.8.6
- name: Deploy
run: |-
./kustomize edit set image REGISTRY/NAMESPACE/IMAGE:TAG=$REGISTRY/$NAMESPACE/$IMAGE:$TAG
./kustomize build . | kubectl apply -f -
kubectl rollout status deployment/$ACK_DEPLOYMENT_NAME
kubectl get services -o wide

View File

@ -0,0 +1,86 @@
# This workflow will build and push a Python application to an Azure Web App when a commit is pushed to your default branch.
#
# This workflow assumes you have already created the target Azure App Service web app.
# For instructions see https://docs.microsoft.com/en-us/azure/app-service/quickstart-python?tabs=bash&pivots=python-framework-flask
#
# To configure this workflow:
#
# 1. Download the Publish Profile for your Azure Web App. You can download this file from the Overview page of your Web App in the Azure Portal.
# For more information: https://docs.microsoft.com/en-us/azure/app-service/deploy-github-actions?tabs=applevel#generate-deployment-credentials
#
# 2. Create a secret in your repository named AZURE_WEBAPP_PUBLISH_PROFILE, paste the publish profile contents as the value of the secret.
# For instructions on obtaining the publish profile see: https://docs.microsoft.com/azure/app-service/deploy-github-actions#configure-the-github-secret
#
# 3. Change the value for the AZURE_WEBAPP_NAME. Optionally, change the PYTHON_VERSION environment variables below.
#
# For more information on GitHub Actions for Azure: https://github.com/Azure/Actions
# For more information on the Azure Web Apps Deploy action: https://github.com/Azure/webapps-deploy
# For more samples to get started with GitHub Action workflows to deploy to Azure: https://github.com/Azure/actions-workflow-samples
name: Build and deploy Python app to Azure Web App
env:
AZURE_WEBAPP_NAME: your-app-name # set this to the name of your Azure Web App
PYTHON_VERSION: '3.8' # set this to the Python version to use
on:
push:
branches: [ "main" ]
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python version
uses: actions/setup-python@v3.0.0
with:
python-version: ${{ env.PYTHON_VERSION }}
cache: 'pip'
- name: Create and start virtual environment
run: |
python -m venv venv
source venv/bin/activate
- name: Install dependencies
run: pip install -r requirements.txt
# Optional: Add step to run tests here (PyTest, Django test suites, etc.)
- name: Upload artifact for deployment jobs
uses: actions/upload-artifact@v4
with:
name: python-app
path: |
.
!venv/
deploy:
permissions:
contents: none
runs-on: ubuntu-latest
needs: build
environment:
name: 'Development'
url: ${{ steps.deploy-to-webapp.outputs.webapp-url }}
steps:
- name: Download artifact from build job
uses: actions/download-artifact@v4
with:
name: python-app
path: .
- name: 'Deploy to Azure Web App'
id: deploy-to-webapp
uses: azure/webapps-deploy@v2
with:
app-name: ${{ env.AZURE_WEBAPP_NAME }}
publish-profile: ${{ secrets.AZURE_WEBAPP_PUBLISH_PROFILE }}

23
.github/workflows/c-cpp.yml vendored Normal file
View File

@ -0,0 +1,23 @@
name: C/C++ CI
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: configure
run: ./configure
- name: make
run: make
- name: make check
run: make check
- name: make distcheck
run: make distcheck

100
.github/workflows/codeql.yml vendored Normal file
View File

@ -0,0 +1,100 @@
# For most projects, this workflow file will not need changing; you simply need
# to commit it to your repository.
#
# You may wish to alter this file to override the set of languages analyzed,
# or to provide custom queries or build logic.
#
# ******** NOTE ********
# We have attempted to detect the languages in your repository. Please check
# the `language` matrix defined below to confirm you have the correct set of
# supported CodeQL languages.
#
name: "CodeQL Advanced"
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
schedule:
- cron: '24 20 * * 3'
jobs:
analyze:
name: Analyze (${{ matrix.language }})
# Runner size impacts CodeQL analysis time. To learn more, please see:
# - https://gh.io/recommended-hardware-resources-for-running-codeql
# - https://gh.io/supported-runners-and-hardware-resources
# - https://gh.io/using-larger-runners (GitHub.com only)
# Consider using larger runners or machines with greater resources for possible analysis time improvements.
runs-on: ${{ (matrix.language == 'swift' && 'macos-latest') || 'ubuntu-latest' }}
permissions:
# required for all workflows
security-events: write
# required to fetch internal or private CodeQL packs
packages: read
# only required for workflows in private repositories
actions: read
contents: read
strategy:
fail-fast: false
matrix:
include:
- language: actions
build-mode: none
- language: python
build-mode: none
# CodeQL supports the following values keywords for 'language': 'actions', 'c-cpp', 'csharp', 'go', 'java-kotlin', 'javascript-typescript', 'python', 'ruby', 'swift'
# Use `c-cpp` to analyze code written in C, C++ or both
# Use 'java-kotlin' to analyze code written in Java, Kotlin or both
# Use 'javascript-typescript' to analyze code written in JavaScript, TypeScript or both
# To learn more about changing the languages that are analyzed or customizing the build mode for your analysis,
# see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/customizing-your-advanced-setup-for-code-scanning.
# If you are analyzing a compiled language, you can modify the 'build-mode' for that language to customize how
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v4
# Add any setup steps before running the `github/codeql-action/init` action.
# This includes steps like installing compilers or runtimes (`actions/setup-node`
# or others). This is typically only required for manual builds.
# - name: Setup runtime (example)
# uses: actions/setup-example@v1
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
# If you wish to specify custom queries, you can do so here or in a config file.
# By default, queries listed here will override any specified in a config file.
# Prefix the list here with "+" to use these queries and those in the config file.
# For more details on CodeQL's query packs, refer to: https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/configuring-code-scanning#using-queries-in-ql-packs
# queries: security-extended,security-and-quality
# If the analyze step fails for one of the languages you are analyzing with
# "We were unable to automatically build your code", modify the matrix above
# to set the build mode to "manual" for that language. Then modify this step
# to build your code.
# Command-line programs to run using the OS shell.
# 📚 See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#jobsjob_idstepsrun
- if: matrix.build-mode == 'manual'
shell: bash
run: |
echo 'If you are using a "manual" build mode for one or more of the' \
'languages you are analyzing, replace this with the commands to build' \
'your code, for example:'
echo ' make bootstrap'
echo ' make release'
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

30
.github/workflows/django.yml vendored Normal file
View File

@ -0,0 +1,30 @@
name: Django CI
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
strategy:
max-parallel: 4
matrix:
python-version: [3.7, 3.8, 3.9]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install Dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt
- name: Run Tests
run: |
python manage.py test

28
.github/workflows/go.yml vendored Normal file
View File

@ -0,0 +1,28 @@
# This workflow will build a golang project
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-go
name: Go
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Go
uses: actions/setup-go@v4
with:
go-version: '1.20'
- name: Build
run: go build -v ./...
- name: Test
run: go test -v ./...

116
.github/workflows/google.yml vendored Normal file
View File

@ -0,0 +1,116 @@
# This workflow will build a docker container, publish it to Google Container
# Registry, and deploy it to GKE when there is a push to the "main"
# branch.
#
# To configure this workflow:
#
# 1. Enable the following Google Cloud APIs:
#
# - Artifact Registry (artifactregistry.googleapis.com)
# - Google Kubernetes Engine (container.googleapis.com)
# - IAM Credentials API (iamcredentials.googleapis.com)
#
# You can learn more about enabling APIs at
# https://support.google.com/googleapi/answer/6158841.
#
# 2. Ensure that your repository contains the necessary configuration for your
# Google Kubernetes Engine cluster, including deployment.yml,
# kustomization.yml, service.yml, etc.
#
# 3. Create and configure a Workload Identity Provider for GitHub:
# https://github.com/google-github-actions/auth#preferred-direct-workload-identity-federation.
#
# Depending on how you authenticate, you will need to grant an IAM principal
# permissions on Google Cloud:
#
# - Artifact Registry Administrator (roles/artifactregistry.admin)
# - Kubernetes Engine Developer (roles/container.developer)
#
# You can learn more about setting IAM permissions at
# https://cloud.google.com/iam/docs/manage-access-other-resources
#
# 5. Change the values in the "env" block to match your values.
name: 'Build and Deploy to GKE'
on:
push:
branches:
- '"main"'
env:
PROJECT_ID: 'my-project' # TODO: update to your Google Cloud project ID
GAR_LOCATION: 'us-central1' # TODO: update to your region
GKE_CLUSTER: 'cluster-1' # TODO: update to your cluster name
GKE_ZONE: 'us-central1-c' # TODO: update to your cluster zone
DEPLOYMENT_NAME: 'gke-test' # TODO: update to your deployment name
REPOSITORY: 'samples' # TODO: update to your Artifact Registry docker repository name
IMAGE: 'static-site'
WORKLOAD_IDENTITY_PROVIDER: 'projects/123456789/locations/global/workloadIdentityPools/my-pool/providers/my-provider' # TODO: update to your workload identity provider
jobs:
setup-build-publish-deploy:
name: 'Setup, Build, Publish, and Deploy'
runs-on: 'ubuntu-latest'
environment: 'production'
permissions:
contents: 'read'
id-token: 'write'
steps:
- name: 'Checkout'
uses: 'actions/checkout@692973e3d937129bcbf40652eb9f2f61becf3332' # actions/checkout@v4
# Configure Workload Identity Federation and generate an access token.
#
# See https://github.com/google-github-actions/auth for more options,
# including authenticating via a JSON credentials file.
- id: 'auth'
name: 'Authenticate to Google Cloud'
uses: 'google-github-actions/auth@f112390a2df9932162083945e46d439060d66ec2' # google-github-actions/auth@v2
with:
workload_identity_provider: '${{ env.WORKLOAD_IDENTITY_PROVIDER }}'
# Authenticate Docker to Google Cloud Artifact Registry
- name: 'Docker Auth'
uses: 'docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567' # docker/login-action@v3
with:
username: 'oauth2accesstoken'
password: '${{ steps.auth.outputs.auth_token }}'
registry: '${{ env.GAR_LOCATION }}-docker.pkg.dev'
# Get the GKE credentials so we can deploy to the cluster
- name: 'Set up GKE credentials'
uses: 'google-github-actions/get-gke-credentials@6051de21ad50fbb1767bc93c11357a49082ad116' # google-github-actions/get-gke-credentials@v2
with:
cluster_name: '${{ env.GKE_CLUSTER }}'
location: '${{ env.GKE_ZONE }}'
# Build the Docker image
- name: 'Build and push Docker container'
run: |-
DOCKER_TAG="${GAR_LOCATION}-docker.pkg.dev/${PROJECT_ID}/${REPOSITORY}/${IMAGE}:${GITHUB_SHA}"
docker build \
--tag "${DOCKER_TAG}" \
--build-arg GITHUB_SHA="${GITHUB_SHA}" \
--build-arg GITHUB_REF="${GITHUB_REF}" \
.
docker push "${DOCKER_TAG}"
# Set up kustomize
- name: 'Set up Kustomize'
run: |-
curl -sfLo kustomize https://github.com/kubernetes-sigs/kustomize/releases/download/kustomize%2Fv5.4.3/kustomize_v5.4.3_linux_amd64.tar.gz
chmod u+x ./kustomize
# Deploy the Docker image to the GKE cluster
- name: 'Deploy to GKE'
run: |-
# replacing the image name in the k8s template
./kustomize edit set image LOCATION-docker.pkg.dev/PROJECT_ID/REPOSITORY/IMAGE:TAG=$GAR_LOCATION-docker.pkg.dev/$PROJECT_ID/$REPOSITORY/$IMAGE:$GITHUB_SHA
./kustomize build . | kubectl apply -f -
kubectl rollout status deployment/$DEPLOYMENT_NAME
kubectl get services -o wide

16
.github/workflows/greetings.yml vendored Normal file
View File

@ -0,0 +1,16 @@
name: Greetings
on: [pull_request_target, issues]
jobs:
greeting:
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
steps:
- uses: actions/first-interaction@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
issue-message: "Message that will be displayed on users' first issue"
pr-message: "Message that will be displayed on users' first pull request"

75
.github/workflows/ibm.yml vendored Normal file
View File

@ -0,0 +1,75 @@
# This workflow will build a docker container, publish it to IBM Container Registry, and deploy it to IKS when there is a push to the "main" branch.
#
# To configure this workflow:
#
# 1. Ensure that your repository contains a Dockerfile
# 2. Setup secrets in your repository by going to settings: Create ICR_NAMESPACE and IBM_CLOUD_API_KEY
# 3. Change the values for the IBM_CLOUD_REGION, REGISTRY_HOSTNAME, IMAGE_NAME, IKS_CLUSTER, DEPLOYMENT_NAME, and PORT
name: Build and Deploy to IKS
on:
push:
branches: [ "main" ]
# Environment variables available to all jobs and steps in this workflow
env:
GITHUB_SHA: ${{ github.sha }}
IBM_CLOUD_API_KEY: ${{ secrets.IBM_CLOUD_API_KEY }}
IBM_CLOUD_REGION: us-south
ICR_NAMESPACE: ${{ secrets.ICR_NAMESPACE }}
REGISTRY_HOSTNAME: us.icr.io
IMAGE_NAME: iks-test
IKS_CLUSTER: example-iks-cluster-name-or-id
DEPLOYMENT_NAME: iks-test
PORT: 5001
jobs:
setup-build-publish-deploy:
name: Setup, Build, Publish, and Deploy
runs-on: ubuntu-latest
environment: production
steps:
- name: Checkout
uses: actions/checkout@v4
# Download and Install IBM Cloud CLI
- name: Install IBM Cloud CLI
run: |
curl -fsSL https://clis.cloud.ibm.com/install/linux | sh
ibmcloud --version
ibmcloud config --check-version=false
ibmcloud plugin install -f kubernetes-service
ibmcloud plugin install -f container-registry
# Authenticate with IBM Cloud CLI
- name: Authenticate with IBM Cloud CLI
run: |
ibmcloud login --apikey "${IBM_CLOUD_API_KEY}" -r "${IBM_CLOUD_REGION}" -g default
ibmcloud cr region-set "${IBM_CLOUD_REGION}"
ibmcloud cr login
# Build the Docker image
- name: Build with Docker
run: |
docker build -t "$REGISTRY_HOSTNAME"/"$ICR_NAMESPACE"/"$IMAGE_NAME":"$GITHUB_SHA" \
--build-arg GITHUB_SHA="$GITHUB_SHA" \
--build-arg GITHUB_REF="$GITHUB_REF" .
# Push the image to IBM Container Registry
- name: Push the image to ICR
run: |
docker push $REGISTRY_HOSTNAME/$ICR_NAMESPACE/$IMAGE_NAME:$GITHUB_SHA
# Deploy the Docker image to the IKS cluster
- name: Deploy to IKS
run: |
ibmcloud ks cluster config --cluster $IKS_CLUSTER
kubectl config current-context
kubectl create deployment $DEPLOYMENT_NAME --image=$REGISTRY_HOSTNAME/$ICR_NAMESPACE/$IMAGE_NAME:$GITHUB_SHA --dry-run -o yaml > deployment.yaml
kubectl apply -f deployment.yaml
kubectl rollout status deployment/$DEPLOYMENT_NAME
kubectl create service loadbalancer $DEPLOYMENT_NAME --tcp=80:$PORT --dry-run -o yaml > service.yaml
kubectl apply -f service.yaml
kubectl get services -o wide

44
.github/workflows/msbuild.yml vendored Normal file
View File

@ -0,0 +1,44 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: MSBuild
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
env:
# Path to the solution file relative to the root of the project.
SOLUTION_FILE_PATH: .
# Configuration type to build.
# You can convert this to a build matrix if you need coverage of multiple configuration types.
# https://docs.github.com/actions/learn-github-actions/managing-complex-workflows#using-a-build-matrix
BUILD_CONFIGURATION: Release
permissions:
contents: read
jobs:
build:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- name: Add MSBuild to PATH
uses: microsoft/setup-msbuild@v1.0.2
- name: Restore NuGet packages
working-directory: ${{env.GITHUB_WORKSPACE}}
run: nuget restore ${{env.SOLUTION_FILE_PATH}}
- name: Build
working-directory: ${{env.GITHUB_WORKSPACE}}
# Add additional options to the MSBuild command line here (like platform or verbosity level).
# See https://docs.microsoft.com/visualstudio/msbuild/msbuild-command-line-reference
run: msbuild /m /p:Configuration=${{env.BUILD_CONFIGURATION}} ${{env.SOLUTION_FILE_PATH}}

23
.github/workflows/pylint.yml vendored Normal file
View File

@ -0,0 +1,23 @@
name: Pylint
on: [push]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ["3.8", "3.9", "3.10"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install pylint
- name: Analysing the code with pylint
run: |
pylint $(git ls-files '*.py')

39
.github/workflows/python-app.yml vendored Normal file
View File

@ -0,0 +1,39 @@
# This workflow will install Python dependencies, run tests and lint with a single version of Python
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python
name: Python application
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
permissions:
contents: read
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Set up Python 3.10
uses: actions/setup-python@v3
with:
python-version: "3.10"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install flake8 pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest
run: |
pytest