mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-07-05 07:51:38 -04:00
docs: Further tidy initial proposal idea
This commit is contained in:
parent
e480e15e5f
commit
69c1bab49e
23
README.md
23
README.md
@ -1,5 +1,3 @@
|
||||
# DeepSeek V3 in Zig - Project Proposal
|
||||
|
||||
<div align="center">
|
||||
<img src="./dzv3-logo.svg" alt="DeepSeek V3 in Zig" width="100%" />
|
||||
</div>
|
||||
@ -108,6 +106,26 @@ Current LLM inference is dominated by Python/PyTorch, which introduces:
|
||||
**Web Scale**: Handle concurrent requests without blocking inference
|
||||
**Accuracy**: Match PyTorch numerical precision
|
||||
|
||||
## Platform-Specific Opportunities
|
||||
|
||||
### Apple Silicon (M-Series)
|
||||
- **Metal Performance Shaders** integration for matrix operations
|
||||
- **AMX instruction set** access for accelerated linear algebra
|
||||
- **Unified memory architecture** exploitation for zero-copy transfers
|
||||
- **Power efficiency tuning** across P and E cores
|
||||
|
||||
### x86_64 Architecture
|
||||
- **AVX-512 vectorization** with masked operations
|
||||
- **Cache-friendly memory layouts** for L1/L2/L3 optimization
|
||||
- **NUMA-aware allocation** and thread assignment
|
||||
- **Dynamic dispatch** based on runtime CPU feature detection
|
||||
|
||||
### NVIDIA GPUs
|
||||
- **CUDA integration** via efficient FFI bindings
|
||||
- **Tensor Core utilization** for mixed-precision operations
|
||||
- **Custom kernels** for attention mechanisms
|
||||
- **Memory pooling** for reduced allocation overhead
|
||||
|
||||
## Getting Started
|
||||
|
||||
**Current Status**: This repository contains the original Python DeepSeek V3 implementation. The Zig implementation is proposed future work.
|
||||
@ -180,4 +198,5 @@ This is an ambitious project that would benefit from expertise in:
|
||||
---
|
||||
|
||||
**Status**: 🎯 Seeking feedback on initial idea
|
||||
|
||||
**Target**: Production-ready LLM inference in Zig
|
Loading…
Reference in New Issue
Block a user