mirror of
https://github.com/deepseek-ai/DeepSeek-V3.git
synced 2025-06-22 17:43:48 -04:00
docs: Enhanced draft code, table of contents + copy
This commit is contained in:
parent
715d0d2e6d
commit
59c80bf948
468
README.md
468
README.md
@ -31,27 +31,49 @@ This document outlines the initial architecture proposal for implementing DeepSe
|
||||
## Table of Contents
|
||||
1. [Overview](#overview)
|
||||
2. [System Architecture](#system-architecture)
|
||||
3. [Component Design](#component-design)
|
||||
1. [Core System](#core-system)
|
||||
1. [Memory Management System](#memory-management-system)
|
||||
2. [Tensor Implementation](#tensor-implementation)
|
||||
3. [Error Handling Framework](#error-handling-framework)
|
||||
4. [Concurrency Model](#concurrency-model)
|
||||
2. [Model Architecture](#model-architecture)
|
||||
1. [Transformer Core](#transformer-core)
|
||||
2. [Attention Mechanisms](#attention-mechanisms)
|
||||
3. [Mixture of Experts (MoE)](#mixture-of-experts-moe)
|
||||
3. [Computation Backend](#computation-backend)
|
||||
1. [Backend Interface](#backend-interface)
|
||||
2. [Metal Integration for Apple Silicon](#metal-integration-for-apple-silicon)
|
||||
4. [Inference Pipeline](#inference-pipeline)
|
||||
1. [Model Loading](#model-loading)
|
||||
2. [Generation Strategies](#generation-strategies)
|
||||
5. [Optimization Layer](#optimization-layer)
|
||||
1. [Compile-Time Optimizations](#compile-time-optimizations)
|
||||
2. [Quantization Framework](#quantization-framework)
|
||||
- [High-Level Component Overview](#high-level-component-overview)
|
||||
3. [Detailed Component Design](#detailed-component-design)
|
||||
1. [Core Systems](#1-core-systems)
|
||||
- [1.1 Memory Management System](#11-memory-management-system)
|
||||
- [1.2 Tensor Implementation](#12-tensor-implementation)
|
||||
- [1.3 Error Handling Framework](#13-error-handling-framework)
|
||||
- [1.4 Concurrency Model](#14-concurrency-model)
|
||||
2. [Model Architecture](#2-model-architecture)
|
||||
- [2.1 Transformer Core](#21-transformer-core)
|
||||
- [2.2 Attention Mechanism](#22-attention-mechanism)
|
||||
- [2.3 Mixture of Experts (MoE)](#23-mixture-of-experts-moe)
|
||||
3. [Computation Backend](#3-computation-backend)
|
||||
- [3.1 Backend Interface](#31-backend-interface)
|
||||
- [3.2 Cross-Platform Compilation](#32-cross-platform-compilation)
|
||||
- [3.2.1 Cross-Compilation Support](#321-cross-compilation-support)
|
||||
- [3.2.2 C ABI Compatibility](#322-c-abi-compatibility)
|
||||
- [3.3 Platform-Specific Implementations](#33-platform-specific-implementations)
|
||||
- [3.4 SIMD Vectorization](#34-simd-vectorization)
|
||||
- [3.5 Runtime CPU Feature Detection](#35-runtime-cpu-feature-detection)
|
||||
- [3.6 Backend Configuration](#36-backend-configuration)
|
||||
- [3.7 GPU Integration](#37-gpu-integration)
|
||||
- [3.7.1 CUDA Backend](#371-cuda-backend)
|
||||
- [3.7.2 Vulkan Backend](#372-vulkan-backend)
|
||||
- [3.8 Quantization Framework](#38-quantization-framework)
|
||||
- [3.9 Memory Management](#39-memory-management)
|
||||
- [3.10 Metal Integration for Apple Silicon](#310-metal-integration-for-apple-silicon)
|
||||
4. [Inference Pipeline](#4-inference-pipeline)
|
||||
- [4.1 Model Loading](#41-model-loading)
|
||||
- [4.2 Generation Strategies](#42-generation-strategies)
|
||||
5. [Optimization Layer](#5-optimization-layer)
|
||||
- [5.1 Compile-Time Optimizations](#51-compile-time-optimizations)
|
||||
- [5.2 Quantization Framework](#52-quantization-framework)
|
||||
4. [Platform-Specific Optimizations](#platform-specific-optimizations)
|
||||
- [Apple Silicon (M-Series)](#apple-silicon-m-series)
|
||||
- [x86_64 Architecture](#x86_64-architecture)
|
||||
- [NVIDIA GPUs](#nvidia-gpus)
|
||||
5. [Development Roadmap](#development-roadmap)
|
||||
- [Phase 1: Core Infrastructure](#phase-1-core-infrastructure)
|
||||
- [Phase 2: Model Architecture](#phase-2-model-architecture)
|
||||
- [Phase 3: Backend Integration](#phase-3-backend-integration)
|
||||
- [Phase 4: Inference Pipeline](#phase-4-inference-pipeline)
|
||||
- [Phase 5: Optimization](#phase-5-optimization)
|
||||
- [Phase 6: Testing and Benchmarking](#phase-6-testing-and-benchmarking)
|
||||
6. [Why Propose DeepSeek V3 in Zig?](#why-propose-deepseek-v3-in-zig)
|
||||
|
||||
## System Architecture
|
||||
@ -159,6 +181,27 @@ pub const TensorAllocator = struct {
|
||||
// backing allocator will free self
|
||||
}
|
||||
|
||||
// Create a stack fallback allocator for small tensors that can be stack-allocated
|
||||
pub fn smallTensorAllocator(self: *TensorAllocator, comptime size: usize) std.heap.StackFallbackAllocator(size) {
|
||||
return std.heap.stackFallbackAllocator(size, self.arena.allocator());
|
||||
}
|
||||
|
||||
// Get a leak-detecting allocator for debugging builds
|
||||
pub fn debugAllocator(self: *TensorAllocator) std.mem.Allocator {
|
||||
if (builtin.mode == .Debug) {
|
||||
return self.gpa.allocator(); // GPA tracks leaks in debug mode
|
||||
} else {
|
||||
return self.persistentAllocator();
|
||||
}
|
||||
}
|
||||
|
||||
// Specialized allocator for model weights that need to be memory-mapped
|
||||
pub fn weightAllocator(self: *TensorAllocator, path: []const u8) !std.mem.Allocator {
|
||||
// In real implementation, this would return a memory-mapped allocator
|
||||
// For now, just use the persistent allocator
|
||||
return self.persistentAllocator();
|
||||
}
|
||||
|
||||
// Get the right allocator for specific tensor use cases
|
||||
pub fn temporaryAllocator(self: *TensorAllocator) std.mem.Allocator {
|
||||
return self.arena.allocator();
|
||||
@ -211,15 +254,21 @@ pub fn Tensor(comptime DataType: type, comptime dimensions: usize) type {
|
||||
|
||||
// Vector types for SIMD operations based on hardware capabilities
|
||||
pub const VecType = switch (DataType) {
|
||||
f32 => if (@hasDecl(builtin, "cpu") and @hasDecl(builtin.cpu, "avx"))
|
||||
@Vector(8, f32) // AVX
|
||||
else if (@hasDecl(builtin, "cpu") and @hasDecl(builtin.cpu, "sse"))
|
||||
@Vector(4, f32) // SSE
|
||||
f32 => if (std.Target.x86.featureSetHas(builtin.cpu.features, .avx512f))
|
||||
@Vector(16, f32) // AVX-512
|
||||
else if (std.Target.x86.featureSetHas(builtin.cpu.features, .avx2))
|
||||
@Vector(8, f32) // AVX2
|
||||
else if (std.Target.x86.featureSetHas(builtin.cpu.features, .sse4_1))
|
||||
@Vector(4, f32) // SSE4.1
|
||||
else
|
||||
@Vector(4, f32), // Fallback
|
||||
f16 => @Vector(8, f16),
|
||||
@Vector(4, f32), // Fallback for non-x86 or basic x86
|
||||
f16 => if (std.Target.aarch64.featureSetHas(builtin.cpu.features, .fp16))
|
||||
@Vector(8, f16) // ARM with FP16 support
|
||||
else
|
||||
@Vector(4, f16), // Default for f16
|
||||
i32 => @Vector(8, i32),
|
||||
i8 => @Vector(16, i8),
|
||||
i4 => @Vector(32, i4), // Support for 4-bit quantization
|
||||
else => @compileError("Unsupported data type for SIMD"),
|
||||
};
|
||||
|
||||
@ -468,6 +517,11 @@ const ModelError = error{
|
||||
TensorShapeMismatch,
|
||||
QuantizationError,
|
||||
InvalidConfiguration,
|
||||
ModelTooLarge,
|
||||
UnsupportedArchitecture,
|
||||
InvalidTokenization,
|
||||
ContextLengthExceeded,
|
||||
DeviceMemoryExhausted,
|
||||
};
|
||||
|
||||
// Union error sets for comprehensive error handling
|
||||
@ -525,7 +579,39 @@ pub fn main() !void {
|
||||
};
|
||||
defer model.deinit();
|
||||
|
||||
// Example of handling errors with fallbacks
|
||||
const modelVersion = getModelVersion(model.path) catch |err| switch (err) {
|
||||
ModelError.InvalidConfiguration => "unknown",
|
||||
else => return err,
|
||||
};
|
||||
|
||||
// Example of collecting and reporting multiple errors
|
||||
var errors = std.ArrayList(ModelError).init(allocator);
|
||||
defer errors.deinit();
|
||||
|
||||
if (validateModelStructure(model)) |_| {
|
||||
// Structure is valid
|
||||
} else |err| {
|
||||
try errors.append(err);
|
||||
}
|
||||
|
||||
if (validateModelWeights(model)) |_| {
|
||||
// Weights are valid
|
||||
} else |err| {
|
||||
try errors.append(err);
|
||||
}
|
||||
|
||||
if (errors.items.len > 0) {
|
||||
std.debug.print("Found {d} errors in model validation\n", .{errors.items.len});
|
||||
return ModelError.InvalidConfiguration;
|
||||
}
|
||||
|
||||
// Continue with model usage...
|
||||
try initializeModelBackend(model);
|
||||
|
||||
std.debug.print("Model version: {s} loaded successfully\n", .{modelVersion});
|
||||
std.debug.print("Model has {d} parameters, {d} activated\n",
|
||||
.{model.totalParameters(), model.activatedParameters()});
|
||||
}
|
||||
```
|
||||
|
||||
@ -581,6 +667,54 @@ pub const ComputeThreadPool = struct {
|
||||
}
|
||||
};
|
||||
|
||||
// Note: Zig's async/await is still under development and may change
|
||||
// This example shows the current Thread.Pool-based approach which is stable
|
||||
// Future versions may leverage async/await for more elegant concurrency
|
||||
|
||||
// Example of how we might use async in the future when it's stable
|
||||
pub fn asyncMatMulExample(allocator: std.mem.Allocator, a: *Tensor(f32, 2), b: *Tensor(f32, 2)) !*Tensor(f32, 2) {
|
||||
// This is an example of potential future API design
|
||||
// Not recommended for production use until async is stabilized
|
||||
|
||||
const M = a.shape[0];
|
||||
const K = a.shape[1];
|
||||
const N = b.shape[1];
|
||||
|
||||
var result = try Tensor(f32, 2).init(allocator, .{M, N});
|
||||
errdefer result.deinit();
|
||||
|
||||
@memset(result.data, 0);
|
||||
|
||||
// Process rows concurrently
|
||||
var row_jobs = try allocator.alloc(@Frame(processRow), M);
|
||||
defer allocator.free(row_jobs);
|
||||
|
||||
for (0..M) |i| {
|
||||
row_jobs[i] = async processRow(i, a, b, &result);
|
||||
}
|
||||
|
||||
// Wait for all rows to complete
|
||||
for (row_jobs) |*job| {
|
||||
await job;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
fn processRow(row: usize, a: *Tensor(f32, 2), b: *Tensor(f32, 2), result: *Tensor(f32, 2)) !void {
|
||||
// Process a single row of the matrix multiplication
|
||||
const K = a.shape[1];
|
||||
const N = b.shape[1];
|
||||
|
||||
for (0..N) |j| {
|
||||
var sum: f32 = 0.0;
|
||||
for (0..K) |k| {
|
||||
sum += a.at(.{row, k}) * b.at(.{k, j});
|
||||
}
|
||||
try result.set(.{row, j}, sum);
|
||||
}
|
||||
}
|
||||
|
||||
// Parallel tensor operation example with async/await
|
||||
pub fn parallelMatMul(allocator: std.mem.Allocator, a: *Tensor(f32, 2), b: *Tensor(f32, 2)) !*Tensor(f32, 2) {
|
||||
const M = a.shape[0];
|
||||
@ -700,7 +834,7 @@ pub const DataType = enum {
|
||||
pub const ModelArgs = struct {
|
||||
// Core model parameters
|
||||
max_batch_size: usize = 8,
|
||||
max_seq_len: usize = 4096 * 4,
|
||||
max_seq_len: usize = 4096 * 32, // 128K context window
|
||||
data_type: DataType = .bf16,
|
||||
vocab_size: usize = 102400,
|
||||
dim: usize = 2048,
|
||||
@ -738,6 +872,13 @@ pub const ModelArgs = struct {
|
||||
use_flash_attention: bool = true, // Use optimized attention implementation
|
||||
use_parallel_experts: bool = true, // Run experts in parallel
|
||||
max_token_limit: ?usize = null, // Optional token generation limit
|
||||
enable_kv_cache: bool = true, // Use KV cache for inference
|
||||
use_multi_token_prediction: bool = false, // Enable multi-token prediction
|
||||
|
||||
// Hardware optimization flags
|
||||
target_specific_optimizations: bool = true, // Enable target-specific optimizations
|
||||
enable_low_precision_computation: bool = true, // Enable mixed-precision computation
|
||||
use_tensor_cores: bool = true, // Use tensor cores if available
|
||||
|
||||
// Generate optimized implementations based on config parameters
|
||||
pub fn getModelType(self: @This()) type {
|
||||
@ -764,7 +905,33 @@ pub const ModelArgs = struct {
|
||||
pub const layer_config = struct {
|
||||
pub const head_dim = (config.dim / config.n_heads);
|
||||
pub const moe_layers_start = config.n_dense_layers;
|
||||
pub const total_params = calculateTotalParameters(config);
|
||||
pub const activated_params = calculateActivatedParameters(config);
|
||||
};
|
||||
|
||||
fn calculateTotalParameters(config: ModelArgs) usize {
|
||||
// This would be a more detailed calculation in reality
|
||||
const embedding_params = config.vocab_size * config.dim;
|
||||
const attention_params = config.n_layers * (config.dim * config.dim * 4);
|
||||
const moe_params = (config.n_layers - config.n_dense_layers) *
|
||||
config.n_routed_experts *
|
||||
(config.dim * config.moe_inter_dim * 2);
|
||||
const dense_ffn_params = config.n_dense_layers * (config.dim * config.inter_dim * 2);
|
||||
|
||||
return embedding_params + attention_params + moe_params + dense_ffn_params;
|
||||
}
|
||||
|
||||
fn calculateActivatedParameters(config: ModelArgs) usize {
|
||||
// This would be a more detailed calculation in reality
|
||||
const embedding_params = config.vocab_size * config.dim;
|
||||
const attention_params = config.n_layers * (config.dim * config.dim * 4);
|
||||
const moe_activated_params = (config.n_layers - config.n_dense_layers) *
|
||||
config.n_activated_experts *
|
||||
(config.dim * config.moe_inter_dim * 2);
|
||||
const dense_ffn_params = config.n_dense_layers * (config.dim * config.inter_dim * 2);
|
||||
|
||||
return embedding_params + attention_params + moe_activated_params + dense_ffn_params;
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
@ -1968,39 +2135,201 @@ Outlining the computation backend architecture for the DeepSeek-V3 project imple
|
||||
The backend interface provides a unified abstraction layer for all computation targets while maintaining Zig's zero-cost abstraction philosophy.
|
||||
|
||||
```zig
|
||||
pub const ComputeError = error{
|
||||
MatrixDimensionMismatch,
|
||||
OutOfMemory,
|
||||
UnsupportedOperation,
|
||||
HardwareAccelerationFailed,
|
||||
DeviceError,
|
||||
InvalidParameter,
|
||||
UnsupportedDataType,
|
||||
KernelExecutionFailed,
|
||||
QuantizationError,
|
||||
};
|
||||
|
||||
pub const ComputeBackend = struct {
|
||||
const Self = @This();
|
||||
|
||||
// Function pointers for backend-specific operations with proper type safety
|
||||
matmulFn: *const fn(a: anytype, b: anytype, c: *anytype, allocator: std.mem.Allocator) anyerror!void,
|
||||
softmaxFn: *const fn(x: anytype, dim: usize, allocator: std.mem.Allocator) anyerror!void,
|
||||
rmsnormFn: *const fn(x: anytype, weight: anytype, eps: f32, allocator: std.mem.Allocator) anyerror!void,
|
||||
attentionFn: *const fn(q: anytype, k: anytype, v: anytype, mask: ?anytype, scale: f32, allocator: std.mem.Allocator) anyerror!void,
|
||||
// Other operations...
|
||||
// Function pointers for backend operations
|
||||
matmulFn: *const fn(a: anytype, b: anytype, c: *anytype, allocator: std.mem.Allocator) ComputeError!void,
|
||||
addFn: *const fn(a: anytype, b: anytype, c: *anytype, allocator: std.mem.Allocator) ComputeError!void,
|
||||
activationFn: *const fn(x: anytype, y: *anytype, act_type: ActivationType, allocator: std.mem.Allocator) ComputeError!void,
|
||||
softmaxFn: *const fn(x: anytype, y: *anytype, dim: ?usize, allocator: std.mem.Allocator) ComputeError!void,
|
||||
|
||||
// Configuration for the backend
|
||||
config: BackendConfig,
|
||||
// Device management
|
||||
initDeviceFn: *const fn(device_id: ?usize) ComputeError!void,
|
||||
releaseDeviceFn: *const fn() void,
|
||||
|
||||
// Dispatch based on backend type with proper error handling
|
||||
pub fn matmul(self: *const Self, a: anytype, b: anytype, c: *anytype, allocator: std.mem.Allocator) !void {
|
||||
return self.matmulFn(a, b, c, allocator);
|
||||
// Memory management
|
||||
allocateDeviceMemoryFn: *const fn(size: usize) ComputeError!*anyopaque,
|
||||
freeDeviceMemoryFn: *const fn(ptr: *anyopaque) void,
|
||||
copyHostToDeviceFn: *const fn(host_ptr: *const anyopaque, device_ptr: *anyopaque, size: usize) ComputeError!void,
|
||||
copyDeviceToHostFn: *const fn(device_ptr: *const anyopaque, host_ptr: *anyopaque, size: usize) ComputeError!void,
|
||||
|
||||
// Backend info
|
||||
getBackendInfoFn: *const fn() BackendInfo,
|
||||
|
||||
// Backend factory functions
|
||||
pub fn createCpuBackend(config: CpuBackendConfig) !*Self {
|
||||
const allocator = config.allocator orelse std.heap.page_allocator;
|
||||
|
||||
var backend = try allocator.create(Self);
|
||||
errdefer allocator.destroy(backend);
|
||||
|
||||
backend.* = .{
|
||||
.matmulFn = if (config.use_simd) simdMatmul else scalarMatmul,
|
||||
.addFn = if (config.use_simd) simdAdd else scalarAdd,
|
||||
.activationFn = genericActivation,
|
||||
.softmaxFn = genericSoftmax,
|
||||
.initDeviceFn = initCpuDevice,
|
||||
.releaseDeviceFn = releaseCpuDevice,
|
||||
.allocateDeviceMemoryFn = allocateCpuMemory,
|
||||
.freeDeviceMemoryFn = freeCpuMemory,
|
||||
.copyHostToDeviceFn = cpuMemcpy,
|
||||
.copyDeviceToHostFn = cpuMemcpy,
|
||||
.getBackendInfoFn = getCpuBackendInfo,
|
||||
};
|
||||
|
||||
return backend;
|
||||
}
|
||||
|
||||
pub fn softmax(self: *const Self, x: anytype, dim: usize, allocator: std.mem.Allocator) !void {
|
||||
return self.softmaxFn(x, dim, allocator);
|
||||
pub fn createMetalBackend(config: MetalBackendConfig) !*Self {
|
||||
// Implementation details for Metal backend would go here
|
||||
@compileError("Metal backend not implemented yet");
|
||||
}
|
||||
|
||||
pub fn rmsnorm(self: *const Self, x: anytype, weight: anytype, eps: f32, allocator: std.mem.Allocator) !void {
|
||||
return self.rmsnormFn(x, weight, eps, allocator);
|
||||
}
|
||||
|
||||
pub fn attention(self: *const Self, q: anytype, k: anytype, v: anytype, mask: ?anytype, scale: f32, allocator: std.mem.Allocator) !void {
|
||||
return self.attentionFn(q, k, v, mask, scale, allocator);
|
||||
pub fn createCudaBackend(config: CudaBackendConfig) !*Self {
|
||||
// Implementation details for CUDA backend would go here
|
||||
@compileError("CUDA backend not implemented yet");
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.2 Platform-Specific Implementations
|
||||
#### 3.2 Cross-Platform Compilation
|
||||
|
||||
One of the key advantages of implementing DeepZig V3 in Zig is the language's exceptional cross-compilation capabilities. Zig includes the compiler and standard libraries for all supported targets, making it trivial to compile for different platforms without additional toolchains.
|
||||
|
||||
#### 3.2.1 Cross-Compilation Support
|
||||
|
||||
```zig
|
||||
// Example of how to build for different target platforms
|
||||
pub fn build(b: *std.Build) void {
|
||||
// Standard x86_64 Linux build
|
||||
const linux_x86_64 = b.standardTargetOptions(.{
|
||||
.default_target = .{
|
||||
.cpu_arch = .x86_64,
|
||||
.os_tag = .linux,
|
||||
.cpu_features_add = std.Target.x86.Feature.avx2_featureset,
|
||||
},
|
||||
});
|
||||
|
||||
// Apple Silicon build
|
||||
const macos_aarch64 = b.standardTargetOptions(.{
|
||||
.default_target = .{
|
||||
.cpu_arch = .aarch64,
|
||||
.os_tag = .macos,
|
||||
.cpu_features_add = std.Target.aarch64.Feature.apple_a14_featureset,
|
||||
},
|
||||
});
|
||||
|
||||
// Windows x86_64 build
|
||||
const windows_x86_64 = b.standardTargetOptions(.{
|
||||
.default_target = .{
|
||||
.cpu_arch = .x86_64,
|
||||
.os_tag = .windows,
|
||||
.abi = .msvc,
|
||||
},
|
||||
});
|
||||
|
||||
// WASM build for browser deployment
|
||||
const wasm = b.standardTargetOptions(.{
|
||||
.default_target = .{
|
||||
.cpu_arch = .wasm32,
|
||||
.os_tag = .freestanding,
|
||||
},
|
||||
});
|
||||
|
||||
// Create libs/executables for each target
|
||||
createBuild(b, linux_x86_64, "linux-x86_64");
|
||||
createBuild(b, macos_aarch64, "macos-arm64");
|
||||
createBuild(b, windows_x86_64, "windows-x86_64");
|
||||
createBuild(b, wasm, "web");
|
||||
}
|
||||
|
||||
fn createBuild(b: *std.Build, target: std.zig.CrossTarget, name: []const u8) void {
|
||||
// Create optimized and debug builds
|
||||
const optimize = b.standardOptimizeOption(.{});
|
||||
|
||||
// Create library
|
||||
const lib = b.addStaticLibrary(.{
|
||||
.name = std.fmt.allocPrint(
|
||||
b.allocator,
|
||||
"deepzig-{s}",
|
||||
.{name}
|
||||
) catch unreachable,
|
||||
.root_source_file = .{ .path = "src/main.zig" },
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
|
||||
// Install in the appropriate location
|
||||
b.installArtifact(lib);
|
||||
|
||||
// Create a CLI tool using the library
|
||||
const exe = b.addExecutable(.{
|
||||
.name = std.fmt.allocPrint(
|
||||
b.allocator,
|
||||
"deepzig-cli-{s}",
|
||||
.{name}
|
||||
) catch unreachable,
|
||||
.root_source_file = .{ .path = "src/cli.zig" },
|
||||
.target = target,
|
||||
.optimize = optimize,
|
||||
});
|
||||
|
||||
exe.linkLibrary(lib);
|
||||
b.installArtifact(exe);
|
||||
}
|
||||
```
|
||||
|
||||
#### 3.2.2 C ABI Compatibility
|
||||
|
||||
DeepZig V3 leverages Zig's seamless interoperability with C to interface with existing ML libraries:
|
||||
|
||||
```zig
|
||||
// Example of interfacing with C libraries
|
||||
const c = @cImport({
|
||||
@cInclude("cublas_v2.h"); // For NVIDIA GPU acceleration
|
||||
@cInclude("mkl.h"); // For Intel CPU optimization
|
||||
});
|
||||
|
||||
pub fn createOptimizedBackend() !*ComputeBackend {
|
||||
// Try to use hardware-specific libraries in order of preference
|
||||
if (hasCudaSupport()) {
|
||||
return createCudaBackend();
|
||||
} else if (hasMklSupport()) {
|
||||
return createMklBackend();
|
||||
} else {
|
||||
return createNativeBackend();
|
||||
}
|
||||
}
|
||||
|
||||
fn hasCudaSupport() bool {
|
||||
// Check if CUDA is available
|
||||
var device_count: c_int = 0;
|
||||
const status = c.cudaGetDeviceCount(&device_count);
|
||||
return (status == c.cudaSuccess and device_count > 0);
|
||||
}
|
||||
|
||||
fn hasMklSupport() bool {
|
||||
// Check if MKL is available
|
||||
return c.mkl_get_version(null) != 0;
|
||||
}
|
||||
```
|
||||
|
||||
This cross-platform approach ensures DeepZig V3 can run efficiently on virtually any hardware platform, from high-end GPU servers to consumer devices, with appropriate performance optimizations for each target.
|
||||
|
||||
#### 3.3 Platform-Specific Implementations
|
||||
|
||||
```zig
|
||||
pub const CPUBackend = struct {
|
||||
@ -2102,7 +2431,7 @@ pub const MetalBackend = struct {
|
||||
- Pipeline caching for improved performance
|
||||
|
||||
|
||||
#### 3.3 SIMD Vectorization
|
||||
#### 3.4 SIMD Vectorization
|
||||
|
||||
DeepSeek-V3 leverages Zig's built-in vector types to achieve high-performance computation across different architectures.
|
||||
|
||||
@ -2191,7 +2520,7 @@ pub fn matrixMultiplySIMD(comptime T: type, a: []const T, b: []const T, c: []T,
|
||||
}
|
||||
```
|
||||
|
||||
#### 3.4 Runtime CPU Feature Detection
|
||||
#### 3.5 Runtime CPU Feature Detection
|
||||
|
||||
```zig
|
||||
pub fn detectCpuFeatures() BackendConfig {
|
||||
@ -2215,7 +2544,7 @@ pub fn detectCpuFeatures() BackendConfig {
|
||||
}
|
||||
```
|
||||
|
||||
#### 3.5 Backend Configuration
|
||||
#### 3.6 Backend Configuration
|
||||
|
||||
Backend configuration allows fine-tuning performance characteristics based on hardware capabilities and workload requirements.
|
||||
|
||||
@ -2250,11 +2579,11 @@ pub const BackendConfig = struct {
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.6 GPU Integration
|
||||
#### 3.7 GPU Integration
|
||||
|
||||
DeepSeek-V3 supports multiple GPU backends, with specialized implementations for each platform.
|
||||
|
||||
#### 3.6.1 CUDA Backend
|
||||
#### 3.7.1 CUDA Backend
|
||||
|
||||
```zig
|
||||
pub const CudaBackend = struct {
|
||||
@ -2304,7 +2633,7 @@ pub const CudaBackend = struct {
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.6.2 Vulkan Backend
|
||||
#### 3.7.2 Vulkan Backend
|
||||
|
||||
```zig
|
||||
pub const VulkanBackend = struct {
|
||||
@ -2338,7 +2667,7 @@ pub const VulkanBackend = struct {
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.7 Quantization Framework
|
||||
#### 3.8 Quantization Framework
|
||||
|
||||
The quantization framework enables efficient model deployment through reduced precision arithmetic.
|
||||
|
||||
@ -2388,7 +2717,7 @@ pub const Quantizer = struct {
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.8 Memory Management
|
||||
#### 3.9 Memory Management
|
||||
|
||||
Efficient memory management is crucial for large language model inference.
|
||||
|
||||
@ -2477,7 +2806,7 @@ pub const KVCache = struct {
|
||||
};
|
||||
```
|
||||
|
||||
#### 3.9 Metal Integration for Apple Silicon
|
||||
#### 3.10 Metal Integration for Apple Silicon
|
||||
|
||||
Modern Apple Silicon devices offer exceptional compute performance, and our Zig implementation takes full advantage of these capabilities through direct Metal API integration:
|
||||
|
||||
@ -4596,20 +4925,35 @@ Key advantages of the Zig implementation include:
|
||||
- Compile-time specialization eliminates runtime overhead
|
||||
- Direct hardware access for maximum efficiency
|
||||
- Zero-cost abstractions for clean yet fast code
|
||||
- SIMD vectorization through native vector types
|
||||
- Cache-aware memory layout optimization
|
||||
|
||||
2. **Memory Efficiency**
|
||||
- Explicit allocation strategies tailored to LLM workloads
|
||||
- Reduced memory fragmentation
|
||||
- Lower overall memory footprint
|
||||
- Reduced memory fragmentation through custom allocators
|
||||
- Lower overall memory footprint through data structure optimization
|
||||
- Precise control over tensor memory layouts
|
||||
- Arena allocation for temporary computations
|
||||
|
||||
3. **Reliability**
|
||||
- Comprehensive error handling
|
||||
- No runtime exceptions
|
||||
- Deterministic resource cleanup
|
||||
- Comprehensive error handling with explicit error sets
|
||||
- No runtime exceptions, all errors are explicitly handled
|
||||
- Deterministic resource cleanup through defer and errdefer
|
||||
- Compile-time correctness guarantees
|
||||
- Clear separation of error paths from happy paths
|
||||
|
||||
4. **Portability**
|
||||
- Cross-platform support with optimized backends
|
||||
- Integrated cross-compilation for all supported platforms
|
||||
- No external dependencies for core functionality
|
||||
- C ABI compatibility for integration with existing libraries
|
||||
- Consistent behavior across environments
|
||||
- Single codebase for all target platforms
|
||||
- WebAssembly target support for browser deployment
|
||||
|
||||
5. **Scalability**
|
||||
- Explicit threading model for compute-intensive operations
|
||||
- Efficient parallel execution of independent tensor operations
|
||||
- Multi-token prediction support
|
||||
- Quantization-aware data structures
|
||||
- Optimized KV-cache for efficient sequence generation
|
||||
|
||||
The resulting system will be particularly well-suited for deployment on resource-constrained devices and will provide superior performance on all platforms. This architectural approach sets the foundation for future innovations in large language model deployment.
|
Loading…
Reference in New Issue
Block a user