add functionality

- applied asyncio to more files
 - added Parser class
 - made small changes
This commit is contained in:
CodingParadigm1 2025-02-03 10:06:38 -07:00
parent 07de76f5ee
commit 267e7ba685
4 changed files with 76 additions and 72 deletions

View File

@ -70,10 +70,8 @@ def main(hf_ckpt_path, save_path, n_experts, mp):
None
"""
torch.set_num_threads(8)
n_local_experts = n_experts // mp
state_dicts = [{} for _ in range(mp)]
tensor_dir = glob(os.path.join(hf_ckpt_path, "*.safetensors"))
token_dir = glob(os.path.join(hf_ckpt_path, "*token*"))
n_local_experts,state_dicts = n_experts // mp, [{} for _ in range(mp)]
tensor_dir, token_dir = list(glob(os.path.join(hf_ckpt_path, "*.safetensors"))),list(glob(os.path.join(hf_ckpt_path, "*token*")))
for file_path in tqdm(tensor_dir):
cm = await sync.to_thread(safe_open, file_path, framework="pt", device="cpu")
async with cm as f:

View File

@ -3,13 +3,42 @@ import json
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm
from asyncio import gather, to_thread, run
import torch
from safetensors.torch import load_file, save_file
from kernel import weight_dequant
def main(fp8_path, bf16_path):
def inner_tensor_file(safetensor_file):
file_name = os.path.basename(safetensor_file)
current_state_dict = load_file(safetensor_file, device="cuda")
loaded_files[file_name] = current_state_dict
new_state_dict = {}
for weight_name, weight in current_state_dict.items():
if weight_name.endswith("_scale_inv"):
continue
elif weight.element_size() == 1: # FP8 weight
scale_inv_name = f"{weight_name}_scale_inv"
try:
# Get scale_inv from the correct file
scale_inv = get_tensor(scale_inv_name)
fp8_weight_names.append(weight_name)
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
except KeyError:
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
new_state_dict[weight_name] = weight
else:
new_state_dict[weight_name] = weight
new_safetensor_file = os.path.join(bf16_path, file_name)
save_file(new_state_dict, new_safetensor_file)
# Memory management: keep only the 2 most recently used files
if len(loaded_files) > 2:
oldest_file = next(iter(loaded_files))
del loaded_files[oldest_file]
torch.cuda.empty_cache()
async def main(fp8_path, bf16_path):
"""
Converts FP8 weights to BF16 and saves the converted weights.
@ -37,8 +66,7 @@ def main(fp8_path, bf16_path):
weight_map = model_index["weight_map"]
# Cache for loaded safetensor files
loaded_files = {}
fp8_weight_names = []
loaded_files, fp8_weight_names = {}, []
# Helper function to get tensor from the correct file
def get_tensor(tensor_name):
@ -62,45 +90,15 @@ def main(fp8_path, bf16_path):
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
safetensor_files.sort()
for safetensor_file in tqdm(safetensor_files):
file_name = os.path.basename(safetensor_file)
current_state_dict = load_file(safetensor_file, device="cuda")
loaded_files[file_name] = current_state_dict
new_state_dict = {}
for weight_name, weight in current_state_dict.items():
if weight_name.endswith("_scale_inv"):
continue
elif weight.element_size() == 1: # FP8 weight
scale_inv_name = f"{weight_name}_scale_inv"
try:
# Get scale_inv from the correct file
scale_inv = get_tensor(scale_inv_name)
fp8_weight_names.append(weight_name)
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
except KeyError:
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
new_state_dict[weight_name] = weight
else:
new_state_dict[weight_name] = weight
new_safetensor_file = os.path.join(bf16_path, file_name)
save_file(new_state_dict, new_safetensor_file)
# Memory management: keep only the 2 most recently used files
if len(loaded_files) > 2:
oldest_file = next(iter(loaded_files))
del loaded_files[oldest_file]
torch.cuda.empty_cache()
gather(*(to_thread(inner_tensor_file, safetensor_file) for safetensor_file in tqdm(safetensor_files)))
# Update model index
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
for weight_name in fp8_weight_names:
scale_inv_name = f"{weight_name}_scale_inv"
if scale_inv_name in weight_map:
weight_map.pop(scale_inv_name)
with open(new_model_index_file, "w") as f:
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
if scale_inv_name in weight_map: weight_map.pop(scale_inv_name)
with open(new_model_index_file, "w") as f: json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
if __name__ == "__main__":
@ -108,5 +106,5 @@ if __name__ == "__main__":
parser.add_argument("--input-fp8-hf-path", type=str, required=True)
parser.add_argument("--output-bf16-hf-path", type=str, required=True)
args = parser.parse_args()
main(args.input_fp8_hf_path, args.output_bf16_hf_path)
run(main(args.input_fp8_hf_path, args.output_bf16_hf_path))

View File

@ -1,13 +1,13 @@
import os
import json
from parser import Parser
from argparse import ArgumentParser
from typing import List
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from asyncio import gather, to_thread, run
from model import Transformer, ModelArgs
@ -36,6 +36,7 @@ def generate(
temperature: float = 1.0
) -> List[List[int]]:
"""
Generates new tokens based on the given prompt tokens using the specified model.
Args:
@ -47,38 +48,35 @@ def generate(
Returns:
List[List[int]]: A list of lists containing the generated tokens for each sequence.
"""
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= model.max_seq_len
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
for i, t in enumerate(prompt_tokens):
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
for i, t in enumerate(prompt_tokens): tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
prev_pos = 0
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
prompt_mask = tokens != -1
for cur_pos in range(min(prompt_lens), total_len):
def inner_cur_pos():
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
next_token = sample(logits, temperature)
else:
next_token = logits.argmax(dim=-1)
if temperature > 0: next_token = sample(logits, temperature)
else: next_token = logits.argmax(dim=-1)
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
prev_pos = cur_pos
if finished.all():
break
if finished.all(): return
gather(*(to_thread(cur_pos) for cur_pos in range(min(prompt_lens), total_len)))
completion_tokens = []
for i, toks in enumerate(tokens.tolist()):
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
if eos_id in toks:
toks = toks[:toks.index(eos_id)]
if eos_id in toks: toks = toks[:toks.index(eos_id)]
completion_tokens.append(toks)
return completion_tokens
def main(
async def main(
ckpt_path: str,
config: str,
input_file: str = "",
@ -131,8 +129,7 @@ def main(
objects = [None]
dist.broadcast_object_list(objects, 0)
prompt = objects[0]
if prompt == "/exit":
break
if prompt == "/exit": break
elif prompt == "/clear":
messages.clear()
continue
@ -143,8 +140,7 @@ def main(
print(completion)
messages.append({"role": "assistant", "content": completion})
else:
with open(input_file) as f:
prompts = [line.strip() for line in f.readlines()]
with open(input_file) as f: prompts = [line.strip() for line in f.readlines()]
assert len(prompts) <= args.max_batch_size
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
@ -154,8 +150,7 @@ def main(
print("Completion:", completion)
print()
if world_size > 1:
dist.destroy_process_group()
if world_size > 1: dist.destroy_process_group()
if __name__ == "__main__":
@ -173,13 +168,14 @@ if __name__ == "__main__":
Raises:
AssertionError: If neither input-file nor interactive mode is specified.
"""
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.2)
args = parser.parse_args()
arg_variables = [
("--ckpt-path", type:=str, required:=True),
("--config", type:=str, required:=True),
("--input-file", type:=str, default:=""),
("--interactive", action:="store_true"),
("--max-new-tokens", type:=int, default:=200),
("--temperature", type:=float, default:=0.2)
]
args = Parser(arg_list=arg_variables).apply_args().return_args()
assert args.input_file or args.interactive
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
run(main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature))

12
inference/parser.py Normal file
View File

@ -0,0 +1,12 @@
from argparse import ArgumentParser
class Parser():
def __init__(self, parser = ArgumentParser(), arg_list = []):
self.parser = parser
self.arg_list = arg_list
def apply_args(self):
for arg in self.arg_list: self.parser.add_argument(*arg)
return self
def return_args(self):
return self.parser.parse_args()