DeepSeek-V3/inference/generate.py

313 lines
9.5 KiB
Python
Raw Normal View History

2024-12-26 06:01:57 -05:00
import os
import json
from argparse import ArgumentParser
from typing import List, Optional, Dict, Any, Tuple
from dataclasses import dataclass
2024-12-26 06:01:57 -05:00
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from model import Transformer, ModelArgs
@dataclass
class GenerationConfig:
max_new_tokens: int
temperature: float
eos_id: int
class TokenSampler:
@staticmethod
def sample(logits: torch.Tensor, temperature: float = 1.0) -> torch.Tensor:
"""
Samples a token from the logits using temperature scaling.
Args:
logits (torch.Tensor): The logits tensor for token predictions.
temperature (float): Temperature for scaling logits.
Returns:
torch.Tensor: The sampled token.
"""
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
class TextGenerator:
def __init__(self, model: Transformer, tokenizer: Any):
self.model = model
self.tokenizer = tokenizer
@torch.inference_mode()
def generate(
self,
prompt_tokens: List[List[int]],
config: GenerationConfig
) -> List[List[int]]:
"""
Generates new tokens based on the given prompt tokens.
Args:
prompt_tokens: A list of lists containing the prompt tokens for each sequence.
config: Generation configuration parameters.
Returns:
List[List[int]]: Generated tokens for each sequence.
"""
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= self.model.max_seq_len
total_len = min(self.model.max_seq_len, config.max_new_tokens + max(prompt_lens))
tokens = self._initialize_tokens(prompt_tokens, total_len)
completion_tokens = self._generate_tokens(
tokens, prompt_lens, total_len, config
)
return completion_tokens
def _initialize_tokens(
self, prompt_tokens: List[List[int]], total_len: int
) -> torch.Tensor:
tokens = torch.full(
(len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda"
)
for i, t in enumerate(prompt_tokens):
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
return tokens
def _generate_tokens(
self,
tokens: torch.Tensor,
prompt_lens: List[int],
total_len: int,
config: GenerationConfig
) -> List[List[int]]:
prev_pos = 0
finished = torch.tensor([False] * len(prompt_lens), device="cuda")
prompt_mask = tokens != -1
for cur_pos in range(min(prompt_lens), total_len):
logits = self.model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
next_token = self._get_next_token(logits, config.temperature)
next_token = torch.where(
prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token
)
tokens[:, cur_pos] = next_token
finished |= torch.logical_and(
~prompt_mask[:, cur_pos], next_token == config.eos_id
)
prev_pos = cur_pos
if finished.all():
break
return self._process_completion_tokens(
tokens, prompt_lens, config.max_new_tokens, config.eos_id
)
def _get_next_token(
self, logits: torch.Tensor, temperature: float
) -> torch.Tensor:
2024-12-26 06:01:57 -05:00
if temperature > 0:
return TokenSampler.sample(logits, temperature)
return logits.argmax(dim=-1)
def _process_completion_tokens(
self,
tokens: torch.Tensor,
prompt_lens: List[int],
max_new_tokens: int,
eos_id: int
) -> List[List[int]]:
completion_tokens = []
for i, toks in enumerate(tokens.tolist()):
toks = toks[prompt_lens[i]:prompt_lens[i] + max_new_tokens]
if eos_id in toks:
toks = toks[:toks.index(eos_id)]
completion_tokens.append(toks)
return completion_tokens
class DistributedEnvironment:
def __init__(self):
self.world_size = int(os.getenv("WORLD_SIZE", "1"))
self.rank = int(os.getenv("RANK", "0"))
self.local_rank = int(os.getenv("LOCAL_RANK", "0"))
def setup(self):
if self.world_size > 1:
dist.init_process_group("nccl")
if self.rank != 0:
global print
print = lambda *_, **__: None
torch.cuda.set_device(self.local_rank)
def cleanup(self):
if self.world_size > 1:
dist.destroy_process_group()
def broadcast_prompt(self, prompt: Optional[str] = None) -> str:
if self.world_size == 1:
return input(">>> ")
elif self.rank == 0:
prompt = input(">>> ")
objects = [prompt]
dist.broadcast_object_list(objects, 0)
return prompt
2024-12-26 06:01:57 -05:00
else:
objects = [None]
dist.broadcast_object_list(objects, 0)
return objects[0]
2024-12-26 06:01:57 -05:00
class ChatSession:
def __init__(
self,
generator: TextGenerator,
config: GenerationConfig,
dist_env: DistributedEnvironment
):
self.generator = generator
self.config = config
self.dist_env = dist_env
self.messages = []
2024-12-26 06:01:57 -05:00
def run_interactive(self):
2024-12-26 06:01:57 -05:00
while True:
prompt = self.dist_env.broadcast_prompt()
2024-12-26 06:01:57 -05:00
if prompt == "/exit":
break
elif prompt == "/clear":
self.messages.clear()
2024-12-26 06:01:57 -05:00
continue
completion = self._process_message(prompt)
2024-12-26 06:01:57 -05:00
print(completion)
self.messages.append({"role": "assistant", "content": completion})
def run_batch(self, input_file: str):
2024-12-26 06:01:57 -05:00
with open(input_file) as f:
prompts = [line.strip() for line in f.readlines()]
assert len(prompts) <= self.generator.model.args.max_batch_size
completions = self._process_batch(prompts)
2024-12-26 06:01:57 -05:00
for prompt, completion in zip(prompts, completions):
print("Prompt:", prompt)
print("Completion:", completion)
print()
def _process_message(self, prompt: str) -> str:
self.messages.append({"role": "user", "content": prompt})
prompt_tokens = self.generator.tokenizer.apply_chat_template(
self.messages, add_generation_prompt=True
)
completion_tokens = self.generator.generate(
[prompt_tokens], self.config
)
return self.generator.tokenizer.decode(
completion_tokens[0], skip_special_tokens=True
)
def _process_batch(self, prompts: List[str]) -> List[str]:
prompt_tokens = [
self.generator.tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True
)
for prompt in prompts
]
completion_tokens = self.generator.generate(
prompt_tokens, self.config
)
return self.generator.tokenizer.batch_decode(
completion_tokens, skip_special_tokens=True
)
def initialize_model(
ckpt_path: str, config_path: str, dist_env: DistributedEnvironment
) -> Tuple[Transformer, Any]:
"""Initialize the model and tokenizer."""
torch.set_default_dtype(torch.bfloat16)
torch.set_num_threads(8)
torch.manual_seed(965)
with open(config_path) as f:
args = ModelArgs(**json.load(f))
print(args)
with torch.device("cuda"):
model = Transformer(args)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
# Warmup
tokenizer.decode(
TextGenerator(model, tokenizer).generate(
[tokenizer.encode("DeepSeek")],
GenerationConfig(max_new_tokens=2, temperature=1.0, eos_id=-1)
)[0]
)
load_model(
model,
os.path.join(
ckpt_path,
f"model{dist_env.rank}-mp{dist_env.world_size}.safetensors"
)
)
return model, tokenizer
def main(
ckpt_path: str,
config: str,
input_file: str = "",
interactive: bool = True,
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
dist_env = DistributedEnvironment()
dist_env.setup()
model, tokenizer = initialize_model(ckpt_path, config, dist_env)
generator = TextGenerator(model, tokenizer)
gen_config = GenerationConfig(
max_new_tokens=max_new_tokens,
temperature=temperature,
eos_id=tokenizer.eos_token_id
)
session = ChatSession(generator, gen_config, dist_env)
if interactive:
session.run_interactive()
else:
session.run_batch(input_file)
dist_env.cleanup()
2024-12-26 06:01:57 -05:00
if __name__ == "__main__":
parser = ArgumentParser(description="Distributed text generation system")
2024-12-26 06:01:57 -05:00
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.2)
args = parser.parse_args()
2024-12-26 06:01:57 -05:00
assert args.input_file or args.interactive
main(
args.ckpt_path,
args.config,
args.input_file,
args.interactive,
args.max_new_tokens,
args.temperature
)