DeepSeek-V3/inference/generate.py

198 lines
7.7 KiB
Python
Raw Normal View History

2024-12-26 06:01:57 -05:00
import os
import json
from argparse import ArgumentParser
from typing import List
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from model import Transformer, ModelArgs
def sample(logits, temperature: float = 1.0):
"""
Samples a token from the logits using temperature scaling.
Args:
logits (torch.Tensor): The logits tensor for token predictions.
temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
Returns:
torch.Tensor: The sampled token.
"""
2024-12-26 06:01:57 -05:00
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
@torch.inference_mode()
def generate_single_sequence(args):
"""
Generates tokens for a single sequence.
Args:
args: Tuple containing (model, tokens, max_new_tokens, eos_id, temperature)
Returns:
List of generated tokens.
"""
model, tokens, max_new_tokens, eos_id, temperature = args
total_len = min(model.max_seq_len, max_new_tokens + tokens.shape[1])
tokens = torch.cat([tokens, torch.full((1, total_len - tokens.shape[1]), -1, dtype=torch.long, device="cuda")], dim=1)
prev_pos = tokens.shape[1] - max_new_tokens
finished = torch.tensor([False], device="cuda")
for cur_pos in range(prev_pos, total_len):
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
next_token = sample(logits, temperature) if temperature > 0 else logits.argmax(dim=-1)
tokens[:, cur_pos] = next_token
finished |= next_token == eos_id
if finished.all():
break
generated_tokens = tokens.tolist()[0]
return generated_tokens[tokens.shape[1] - max_new_tokens :]
@torch.inference_mode()
def generate_parallel(
2024-12-26 06:01:57 -05:00
model: Transformer,
prompt_tokens: List[List[int]],
max_new_tokens: int,
eos_id: int,
temperature: float = 1.0,
num_workers: int = 4
2024-12-26 06:01:57 -05:00
) -> List[List[int]]:
"""
Parallelized token generation using multiprocessing.
Args:
model (Transformer): The transformer model used for token generation.
prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
max_new_tokens (int): The maximum number of new tokens to generate.
eos_id (int): The end-of-sequence token ID.
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
num_workers (int, optional): Number of worker processes for parallel generation.
Returns:
List[List[int]]: A list of lists containing the generated tokens for each sequence.
"""
model.share_memory() # Make the model shareable across processes
tokens_list = [torch.tensor(t, dtype=torch.long, device="cuda").unsqueeze(0) for t in prompt_tokens]
args_list = [(model, tokens, max_new_tokens, eos_id, temperature) for tokens in tokens_list]
with mp.Pool(num_workers) as pool:
results = pool.map(generate_single_sequence, args_list)
return results
2024-12-26 06:01:57 -05:00
def main(
ckpt_path: str,
config: str,
input_file: str = "",
interactive: bool = True,
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
"""
Main function to load the model and perform interactive or batch text generation.
Args:
ckpt_path (str): Path to the model checkpoint directory.
config (str): Path to the model configuration file.
input_file (str, optional): Path to a file containing input prompts. Defaults to "".
interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
temperature (float, optional): Temperature for sampling. Defaults to 1.0.
"""
2024-12-26 06:01:57 -05:00
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
global print
if rank != 0:
print = lambda *_, **__: None
torch.cuda.set_device(local_rank)
torch.set_default_dtype(torch.bfloat16)
torch.set_num_threads(8)
torch.manual_seed(965)
with open(config) as f:
args = ModelArgs(**json.load(f))
print(args)
with torch.device("cuda"):
model = Transformer(args)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
if interactive:
messages = []
while True:
if world_size == 1:
prompt = input(">>> ")
elif rank == 0:
prompt = input(">>> ")
objects = [prompt]
dist.broadcast_object_list(objects, 0)
else:
objects = [None]
dist.broadcast_object_list(objects, 0)
prompt = objects[0]
if prompt == "/exit":
break
elif prompt == "/clear":
messages.clear()
continue
messages.append({"role": "user", "content": prompt})
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
print(completion)
messages.append({"role": "assistant", "content": completion})
else:
with open(input_file) as f:
prompts = [line.strip() for line in f.readlines()]
assert len(prompts) <= args.max_batch_size
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
completion_tokens = generate_parallel(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature, num_workers=4)
2024-12-26 06:01:57 -05:00
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
for prompt, completion in zip(prompts, completions):
print("Prompt:", prompt)
print("Completion:", completion)
print()
if world_size > 1:
dist.destroy_process_group()
if __name__ == "__main__":
"""
Command-line interface for distributed text generation.
Arguments:
--ckpt-path (str): Path to the model checkpoint directory.
--config (str): Path to the model configuration file.
--input-file (str, optional): File containing prompts for batch processing.
--interactive (bool, optional): Enable interactive mode for generating text.
--max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
--temperature (float, optional): Temperature for sampling. Defaults to 0.2.
Raises:
AssertionError: If neither input-file nor interactive mode is specified.
"""
2024-12-26 06:01:57 -05:00
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.2)
args = parser.parse_args()
assert args.input_file or args.interactive
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)