## 1. Introduction We provide a test script to evaluate the capability of the **deepseek-coder** model to solve mathematical problems using external tools (Python interpreter). We evaluate it using the [PAL](https://arxiv.org/pdf/2211.10435.pdf) method on seven datasets: **GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, and MAWPS**. ## 2. Setup ``` pip install sympy==1.12 pebble timeout-decorator transformers ``` ## 3. Evaluation We provide an example of testing the **deepseek-coder-1.3b-base** model on the **gsm8k** dataset using **8** GPUs. If you wish to use a different model or dataset, you can modify it as needed. ```bash MODEL_NAME_OR_PATH=deepseek-ai/deepseek-coder-1.3b-base DATA=gsm8k # 'math' 'gsm8k' 'gsm-hard' 'svamp' 'tabmwp' 'asdiv' 'mawps' MODEL_DIR_NAME=${MODEL_NAME_OR_PATH##*/} GPU_NUM=8 for rank in {0..7}; do CUDA_VISIBLE_DEVICES=$rank nohup python run.py \ --data_name ${DATA} \ --model_name_or_path ${MODEL_NAME_OR_PATH} \ --batch_size 16 \ --do_inference \ --rank $rank \ --world_size $GPU_NUM 2>&1 & done # Wait for all processes to finish wait echo "All processes completed." python run.py --do_eval --data_name ${DATA} --model_name_or_path ${MODEL_NAME_OR_PATH} --world_size $GPU_NUM | tee outputs/${MODEL_DIR_NAME}/${DATA}/result.out ``` ## 4. Experimental Results We report experimental results here for mathematical reasoning tasks by using python program. For all open-source models, we utilize this repository and test with the same prompt. We set the maximum input length to **2048** and the maximum output length to **512**, and employ the **greedy search strategy**. | Model | Size | GSM8k | MATH | GSM-Hard | SVAMP | TabMWP | ASDiv | MAWPS | Avg | | -------------- | ---- | ----- | ----- | -------- | ----- | ------ | ----- | ----- | ----- | | CodeShell | 7B | 15.8% | 8.6% | 17.3% | 35.5% | 28.2% | 44.4% | 59.8% | 29.9% | | CodeGeex-2 | 7B | 22.2% | 9.7% | 23.6% | 39.0% | 44.6% | 48.5% | 66.0% | 36.2% | | StarCoder-Base | 16B | 23.4% | 10.3% | 23.0% | 42.4% | 45.0% | 54.9% | 81.1% | 40.0% | | CodeLLama-Base | 7B | 31.2% | 12.1% | 30.2% | 54.2% | 52.9% | 59.6% | 82.6% | 46.1% | | CodeLLama-Base | 13B | 43.1% | 14.4% | 40.2% | 59.2% | 60.3% | 63.6% | 85.3% | 52.3% | | CodeLLama-Base | 34B | 58.2% | 21.2% | 51.8% | 70.3% | 69.8% | 70.7% | 91.8% | 62.0% | | | | | | | | | | | | | DeepSeek-Coder-Base | 1.3B | 14.6% | 16.8% | 14.5% | 36.7% | 30.0% | 48.2% | 62.3% | 31.9% | | DeepSeek-Coder-MQA-Base | 5.7B | 38.8% | 20.0% | 36.8% | 52.5% | 55.9% | 63.9% | 84.8% | 50.4% | | DeepSeek-Coder-Base | 6.7B | 43.2% | 19.2% | 40.3% | 58.4% | 67.9% | 67.2% | 87.0% | 54.7% | | DeepSeek-Coder-Base | 33B | **60.7%** | **29.1%** | **54.1%** | **71.6%** | **75.3%** | **76.7%** | **93.3%** | **65.8%** |