{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "<a href=\"https://colab.research.google.com/github/Orrm23/DeepSeek-Coder/blob/main/TitanicSurvivalPrediction_NAIVEBAYES.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" ] }, { "cell_type": "markdown", "metadata": { "id": "Qmi36D7ZPY-M" }, "source": [ "# **Day - 6 Titanic Survival Prediction using NAIVE BAYES**" ] }, { "cell_type": "markdown", "metadata": { "id": "Q8lgHC2zPTE4" }, "source": [ "### *Importing basic Libraries*" ] }, { "cell_type": "code", "metadata": { "id": "nKKbpfywIqAq" }, "source": [ "import pandas as pd\n", "import numpy as np" ], "execution_count": 1, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "xfyZYdDaPnJz" }, "source": [ "### *Choose Dataset file from Local Directory*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 73 }, "id": "ki0LIHaOP869", "outputId": "b9ecc9aa-e308-4031-a096-fd77b3f36d4c" }, "source": [ "from google.colab import files\n", "uploaded = files.upload()" ], "execution_count": 2, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "<IPython.core.display.HTML object>" ], "text/html": [ "\n", " <input type=\"file\" id=\"files-0ec9cc56-2e03-40c4-aa43-3d5dac3d68d6\" name=\"files[]\" multiple disabled\n", " style=\"border:none\" />\n", " <output id=\"result-0ec9cc56-2e03-40c4-aa43-3d5dac3d68d6\">\n", " Upload widget is only available when the cell has been executed in the\n", " current browser session. Please rerun this cell to enable.\n", " </output>\n", " <script>// Copyright 2017 Google LLC\n", "//\n", "// Licensed under the Apache License, Version 2.0 (the \"License\");\n", "// you may not use this file except in compliance with the License.\n", "// You may obtain a copy of the License at\n", "//\n", "// http://www.apache.org/licenses/LICENSE-2.0\n", "//\n", "// Unless required by applicable law or agreed to in writing, software\n", "// distributed under the License is distributed on an \"AS IS\" BASIS,\n", "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "// See the License for the specific language governing permissions and\n", "// limitations under the License.\n", "\n", "/**\n", " * @fileoverview Helpers for google.colab Python module.\n", " */\n", "(function(scope) {\n", "function span(text, styleAttributes = {}) {\n", " const element = document.createElement('span');\n", " element.textContent = text;\n", " for (const key of Object.keys(styleAttributes)) {\n", " element.style[key] = styleAttributes[key];\n", " }\n", " return element;\n", "}\n", "\n", "// Max number of bytes which will be uploaded at a time.\n", "const MAX_PAYLOAD_SIZE = 100 * 1024;\n", "\n", "function _uploadFiles(inputId, outputId) {\n", " const steps = uploadFilesStep(inputId, outputId);\n", " const outputElement = document.getElementById(outputId);\n", " // Cache steps on the outputElement to make it available for the next call\n", " // to uploadFilesContinue from Python.\n", " outputElement.steps = steps;\n", "\n", " return _uploadFilesContinue(outputId);\n", "}\n", "\n", "// This is roughly an async generator (not supported in the browser yet),\n", "// where there are multiple asynchronous steps and the Python side is going\n", "// to poll for completion of each step.\n", "// This uses a Promise to block the python side on completion of each step,\n", "// then passes the result of the previous step as the input to the next step.\n", "function _uploadFilesContinue(outputId) {\n", " const outputElement = document.getElementById(outputId);\n", " const steps = outputElement.steps;\n", "\n", " const next = steps.next(outputElement.lastPromiseValue);\n", " return Promise.resolve(next.value.promise).then((value) => {\n", " // Cache the last promise value to make it available to the next\n", " // step of the generator.\n", " outputElement.lastPromiseValue = value;\n", " return next.value.response;\n", " });\n", "}\n", "\n", "/**\n", " * Generator function which is called between each async step of the upload\n", " * process.\n", " * @param {string} inputId Element ID of the input file picker element.\n", " * @param {string} outputId Element ID of the output display.\n", " * @return {!Iterable<!Object>} Iterable of next steps.\n", " */\n", "function* uploadFilesStep(inputId, outputId) {\n", " const inputElement = document.getElementById(inputId);\n", " inputElement.disabled = false;\n", "\n", " const outputElement = document.getElementById(outputId);\n", " outputElement.innerHTML = '';\n", "\n", " const pickedPromise = new Promise((resolve) => {\n", " inputElement.addEventListener('change', (e) => {\n", " resolve(e.target.files);\n", " });\n", " });\n", "\n", " const cancel = document.createElement('button');\n", " inputElement.parentElement.appendChild(cancel);\n", " cancel.textContent = 'Cancel upload';\n", " const cancelPromise = new Promise((resolve) => {\n", " cancel.onclick = () => {\n", " resolve(null);\n", " };\n", " });\n", "\n", " // Wait for the user to pick the files.\n", " const files = yield {\n", " promise: Promise.race([pickedPromise, cancelPromise]),\n", " response: {\n", " action: 'starting',\n", " }\n", " };\n", "\n", " cancel.remove();\n", "\n", " // Disable the input element since further picks are not allowed.\n", " inputElement.disabled = true;\n", "\n", " if (!files) {\n", " return {\n", " response: {\n", " action: 'complete',\n", " }\n", " };\n", " }\n", "\n", " for (const file of files) {\n", " const li = document.createElement('li');\n", " li.append(span(file.name, {fontWeight: 'bold'}));\n", " li.append(span(\n", " `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n", " `last modified: ${\n", " file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n", " 'n/a'} - `));\n", " const percent = span('0% done');\n", " li.appendChild(percent);\n", "\n", " outputElement.appendChild(li);\n", "\n", " const fileDataPromise = new Promise((resolve) => {\n", " const reader = new FileReader();\n", " reader.onload = (e) => {\n", " resolve(e.target.result);\n", " };\n", " reader.readAsArrayBuffer(file);\n", " });\n", " // Wait for the data to be ready.\n", " let fileData = yield {\n", " promise: fileDataPromise,\n", " response: {\n", " action: 'continue',\n", " }\n", " };\n", "\n", " // Use a chunked sending to avoid message size limits. See b/62115660.\n", " let position = 0;\n", " do {\n", " const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n", " const chunk = new Uint8Array(fileData, position, length);\n", " position += length;\n", "\n", " const base64 = btoa(String.fromCharCode.apply(null, chunk));\n", " yield {\n", " response: {\n", " action: 'append',\n", " file: file.name,\n", " data: base64,\n", " },\n", " };\n", "\n", " let percentDone = fileData.byteLength === 0 ?\n", " 100 :\n", " Math.round((position / fileData.byteLength) * 100);\n", " percent.textContent = `${percentDone}% done`;\n", "\n", " } while (position < fileData.byteLength);\n", " }\n", "\n", " // All done.\n", " yield {\n", " response: {\n", " action: 'complete',\n", " }\n", " };\n", "}\n", "\n", "scope.google = scope.google || {};\n", "scope.google.colab = scope.google.colab || {};\n", "scope.google.colab._files = {\n", " _uploadFiles,\n", " _uploadFilesContinue,\n", "};\n", "})(self);\n", "</script> " ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Saving titanicsurvival.csv to titanicsurvival.csv\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "oEx3VSimP_DF" }, "source": [ "### *Load Dataset*" ] }, { "cell_type": "code", "metadata": { "id": "HQVO5TRBQCGP" }, "source": [ "dataset = pd.read_csv('titanicsurvival.csv')" ], "execution_count": 3, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "Da6ym5z7QHwY" }, "source": [ "### *Summarize Dataset*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Esd6w-GBQLZ5", "outputId": "44a2090a-3b0f-4ee2-c37b-328f185d2bba" }, "source": [ "print(dataset.shape)\n", "print(dataset.head(5))" ], "execution_count": 4, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "(891, 5)\n", " Pclass Sex Age Fare Survived\n", "0 3 male 22.0 7.2500 0\n", "1 1 female 38.0 71.2833 1\n", "2 3 female 26.0 7.9250 1\n", "3 1 female 35.0 53.1000 1\n", "4 3 male 35.0 8.0500 0\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "1AALh-8cS6Jd" }, "source": [ "### *Mapping Text Data to Binary Value*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "rcr5RdqtS9iD", "outputId": "24ecd79c-ef7c-4301-be39-ecad5bb7361e" }, "source": [ "income_set = set(dataset['Sex'])\n", "dataset['Sex'] = dataset['Sex'].map({'female': 0, 'male': 1}).astype(int)\n", "print(dataset.head)" ], "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "<bound method NDFrame.head of Pclass Sex Age Fare Survived\n", "0 3 1 22.0 7.2500 0\n", "1 1 0 38.0 71.2833 1\n", "2 3 0 26.0 7.9250 1\n", "3 1 0 35.0 53.1000 1\n", "4 3 1 35.0 8.0500 0\n", ".. ... ... ... ... ...\n", "886 2 1 27.0 13.0000 0\n", "887 1 0 19.0 30.0000 1\n", "888 3 0 NaN 23.4500 0\n", "889 1 1 26.0 30.0000 1\n", "890 3 1 32.0 7.7500 0\n", "\n", "[891 rows x 5 columns]>\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "_j0iPDCWRYAg" }, "source": [ "### *Segregate Dataset into X(Input/IndependentVariable) & Y(Output/DependentVariable)*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 424 }, "id": "Cqyxx7qQRYp7", "outputId": "f7fa1388-e792-4dab-ef8b-6110b7b7d6f5" }, "source": [ "X = dataset.drop('Survived',axis='columns')\n", "X" ], "execution_count": 6, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ " Pclass Sex Age Fare\n", "0 3 1 22.0 7.2500\n", "1 1 0 38.0 71.2833\n", "2 3 0 26.0 7.9250\n", "3 1 0 35.0 53.1000\n", "4 3 1 35.0 8.0500\n", ".. ... ... ... ...\n", "886 2 1 27.0 13.0000\n", "887 1 0 19.0 30.0000\n", "888 3 0 NaN 23.4500\n", "889 1 1 26.0 30.0000\n", "890 3 1 32.0 7.7500\n", "\n", "[891 rows x 4 columns]" ], "text/html": [ "\n", " <div id=\"df-6578e182-af60-4e65-af5c-bc6cc15ae1ca\" class=\"colab-df-container\">\n", " <div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Pclass</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>Fare</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>22.0</td>\n", " <td>7.2500</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>38.0</td>\n", " <td>71.2833</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>26.0</td>\n", " <td>7.9250</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>35.0</td>\n", " <td>53.1000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>35.0</td>\n", " <td>8.0500</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>886</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>27.0</td>\n", " <td>13.0000</td>\n", " </tr>\n", " <tr>\n", " <th>887</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>19.0</td>\n", " <td>30.0000</td>\n", " </tr>\n", " <tr>\n", " <th>888</th>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>NaN</td>\n", " <td>23.4500</td>\n", " </tr>\n", " <tr>\n", " <th>889</th>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>26.0</td>\n", " <td>30.0000</td>\n", " </tr>\n", " <tr>\n", " <th>890</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>32.0</td>\n", " <td>7.7500</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>891 rows × 4 columns</p>\n", "</div>\n", " <div class=\"colab-df-buttons\">\n", "\n", " <div class=\"colab-df-container\">\n", " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6578e182-af60-4e65-af5c-bc6cc15ae1ca')\"\n", " title=\"Convert this dataframe to an interactive table.\"\n", " style=\"display:none;\">\n", "\n", " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n", " <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n", " </svg>\n", " </button>\n", "\n", " <style>\n", " .colab-df-container {\n", " display:flex;\n", " gap: 12px;\n", " }\n", "\n", " .colab-df-convert {\n", " background-color: #E8F0FE;\n", " border: none;\n", " border-radius: 50%;\n", " cursor: pointer;\n", " display: none;\n", " fill: #1967D2;\n", " height: 32px;\n", " padding: 0 0 0 0;\n", " width: 32px;\n", " }\n", "\n", " .colab-df-convert:hover {\n", " background-color: #E2EBFA;\n", " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", " fill: #174EA6;\n", " }\n", "\n", " .colab-df-buttons div {\n", " margin-bottom: 4px;\n", " }\n", "\n", " [theme=dark] .colab-df-convert {\n", " background-color: #3B4455;\n", " fill: #D2E3FC;\n", " }\n", "\n", " [theme=dark] .colab-df-convert:hover {\n", " background-color: #434B5C;\n", " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", " fill: #FFFFFF;\n", " }\n", " </style>\n", "\n", " <script>\n", " const buttonEl =\n", " document.querySelector('#df-6578e182-af60-4e65-af5c-bc6cc15ae1ca button.colab-df-convert');\n", " buttonEl.style.display =\n", " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", "\n", " async function convertToInteractive(key) {\n", " const element = document.querySelector('#df-6578e182-af60-4e65-af5c-bc6cc15ae1ca');\n", " const dataTable =\n", " await google.colab.kernel.invokeFunction('convertToInteractive',\n", " [key], {});\n", " if (!dataTable) return;\n", "\n", " const docLinkHtml = 'Like what you see? Visit the ' +\n", " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", " + ' to learn more about interactive tables.';\n", " element.innerHTML = '';\n", " dataTable['output_type'] = 'display_data';\n", " await google.colab.output.renderOutput(dataTable, element);\n", " const docLink = document.createElement('div');\n", " docLink.innerHTML = docLinkHtml;\n", " element.appendChild(docLink);\n", " }\n", " </script>\n", " </div>\n", "\n", "\n", "<div id=\"df-53e2a80a-be56-4820-b9d7-3afb34fdeb42\">\n", " <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-53e2a80a-be56-4820-b9d7-3afb34fdeb42')\"\n", " title=\"Suggest charts\"\n", " style=\"display:none;\">\n", "\n", "<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", " width=\"24px\">\n", " <g>\n", " <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n", " </g>\n", "</svg>\n", " </button>\n", "\n", "<style>\n", " .colab-df-quickchart {\n", " --bg-color: #E8F0FE;\n", " --fill-color: #1967D2;\n", " --hover-bg-color: #E2EBFA;\n", " --hover-fill-color: #174EA6;\n", " --disabled-fill-color: #AAA;\n", " --disabled-bg-color: #DDD;\n", " }\n", "\n", " [theme=dark] .colab-df-quickchart {\n", " --bg-color: #3B4455;\n", " --fill-color: #D2E3FC;\n", " --hover-bg-color: #434B5C;\n", " --hover-fill-color: #FFFFFF;\n", " --disabled-bg-color: #3B4455;\n", " --disabled-fill-color: #666;\n", " }\n", "\n", " .colab-df-quickchart {\n", " background-color: var(--bg-color);\n", " border: none;\n", " border-radius: 50%;\n", " cursor: pointer;\n", " display: none;\n", " fill: var(--fill-color);\n", " height: 32px;\n", " padding: 0;\n", " width: 32px;\n", " }\n", "\n", " .colab-df-quickchart:hover {\n", " background-color: var(--hover-bg-color);\n", " box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n", " fill: var(--button-hover-fill-color);\n", " }\n", "\n", " .colab-df-quickchart-complete:disabled,\n", " .colab-df-quickchart-complete:disabled:hover {\n", " background-color: var(--disabled-bg-color);\n", " fill: var(--disabled-fill-color);\n", " box-shadow: none;\n", " }\n", "\n", " .colab-df-spinner {\n", " border: 2px solid var(--fill-color);\n", " border-color: transparent;\n", " border-bottom-color: var(--fill-color);\n", " animation:\n", " spin 1s steps(1) infinite;\n", " }\n", "\n", " @keyframes spin {\n", " 0% {\n", " border-color: transparent;\n", " border-bottom-color: var(--fill-color);\n", " border-left-color: var(--fill-color);\n", " }\n", " 20% {\n", " border-color: transparent;\n", " border-left-color: var(--fill-color);\n", " border-top-color: var(--fill-color);\n", " }\n", " 30% {\n", " border-color: transparent;\n", " border-left-color: var(--fill-color);\n", " border-top-color: var(--fill-color);\n", " border-right-color: var(--fill-color);\n", " }\n", " 40% {\n", " border-color: transparent;\n", " border-right-color: var(--fill-color);\n", " border-top-color: var(--fill-color);\n", " }\n", " 60% {\n", " border-color: transparent;\n", " border-right-color: var(--fill-color);\n", " }\n", " 80% {\n", " border-color: transparent;\n", " border-right-color: var(--fill-color);\n", " border-bottom-color: var(--fill-color);\n", " }\n", " 90% {\n", " border-color: transparent;\n", " border-bottom-color: var(--fill-color);\n", " }\n", " }\n", "</style>\n", "\n", " <script>\n", " async function quickchart(key) {\n", " const quickchartButtonEl =\n", " document.querySelector('#' + key + ' button');\n", " quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n", " quickchartButtonEl.classList.add('colab-df-spinner');\n", " try {\n", " const charts = await google.colab.kernel.invokeFunction(\n", " 'suggestCharts', [key], {});\n", " } catch (error) {\n", " console.error('Error during call to suggestCharts:', error);\n", " }\n", " quickchartButtonEl.classList.remove('colab-df-spinner');\n", " quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n", " }\n", " (() => {\n", " let quickchartButtonEl =\n", " document.querySelector('#df-53e2a80a-be56-4820-b9d7-3afb34fdeb42 button');\n", " quickchartButtonEl.style.display =\n", " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", " })();\n", " </script>\n", "</div>\n", "\n", " <div id=\"id_10c9f5a8-fe19-4ff8-8074-a84d473ca1d2\">\n", " <style>\n", " .colab-df-generate {\n", " background-color: #E8F0FE;\n", " border: none;\n", " border-radius: 50%;\n", " cursor: pointer;\n", " display: none;\n", " fill: #1967D2;\n", " height: 32px;\n", " padding: 0 0 0 0;\n", " width: 32px;\n", " }\n", "\n", " .colab-df-generate:hover {\n", " background-color: #E2EBFA;\n", " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", " fill: #174EA6;\n", " }\n", "\n", " [theme=dark] .colab-df-generate {\n", " background-color: #3B4455;\n", " fill: #D2E3FC;\n", " }\n", "\n", " [theme=dark] .colab-df-generate:hover {\n", " background-color: #434B5C;\n", " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", " fill: #FFFFFF;\n", " }\n", " </style>\n", " <button class=\"colab-df-generate\" onclick=\"generateWithVariable('X')\"\n", " title=\"Generate code using this dataframe.\"\n", " style=\"display:none;\">\n", "\n", " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", " width=\"24px\">\n", " <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n", " </svg>\n", " </button>\n", " <script>\n", " (() => {\n", " const buttonEl =\n", " document.querySelector('#id_10c9f5a8-fe19-4ff8-8074-a84d473ca1d2 button.colab-df-generate');\n", " buttonEl.style.display =\n", " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", "\n", " buttonEl.onclick = () => {\n", " google.colab.notebook.generateWithVariable('X');\n", " }\n", " })();\n", " </script>\n", " </div>\n", "\n", " </div>\n", " </div>\n" ], "application/vnd.google.colaboratory.intrinsic+json": { "type": "dataframe", "variable_name": "X", "summary": "{\n \"name\": \"X\",\n \"rows\": 891,\n \"fields\": [\n {\n \"column\": \"Pclass\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 1,\n \"max\": 3,\n \"num_unique_values\": 3,\n \"samples\": [\n 3,\n 1,\n 2\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Sex\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Age\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 14.526497332334044,\n \"min\": 0.42,\n \"max\": 80.0,\n \"num_unique_values\": 88,\n \"samples\": [\n 0.75,\n 22.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"Fare\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 49.693428597180905,\n \"min\": 0.0,\n \"max\": 512.3292,\n \"num_unique_values\": 248,\n \"samples\": [\n 11.2417,\n 51.8625\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}" } }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 458 }, "id": "1F1tC2tRRddY", "outputId": "dfa4f8ca-945a-465b-ab63-637411837fb8" }, "source": [ "Y = dataset.Survived\n", "Y" ], "execution_count": 7, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "0 0\n", "1 1\n", "2 1\n", "3 1\n", "4 0\n", " ..\n", "886 0\n", "887 1\n", "888 0\n", "889 1\n", "890 0\n", "Name: Survived, Length: 891, dtype: int64" ], "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Survived</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>886</th>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>887</th>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>888</th>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>889</th>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>890</th>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>891 rows × 1 columns</p>\n", "</div><br><label><b>dtype:</b> int64</label>" ] }, "metadata": {}, "execution_count": 7 } ] }, { "cell_type": "markdown", "metadata": { "id": "SibVwENGTpsN" }, "source": [ "Finding & Removing NA values from our Features X" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "soVDtqhRTwHZ", "outputId": "e18b9852-5d91-40cb-c46d-94f3402f13a2" }, "source": [ "X.columns[X.isna().any()]" ], "execution_count": 8, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['Age'], dtype='object')" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "code", "metadata": { "id": "0_jCaFTRXQj1" }, "source": [ "X.Age = X.Age.fillna(X.Age.mean())" ], "execution_count": 9, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "nYNPgh4cX0bt" }, "source": [ "### *Test again to check any na value*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "QSBSGrNfX3NA", "outputId": "5a65aec5-9704-4c66-8c2c-9012d961c99b" }, "source": [ "X.columns[X.isna().any()]" ], "execution_count": 10, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index([], dtype='object')" ] }, "metadata": {}, "execution_count": 10 } ] }, { "cell_type": "markdown", "metadata": { "id": "R4ngba4SYEue" }, "source": [ "### *Splitting Dataset into Train & Test*" ] }, { "cell_type": "code", "metadata": { "id": "vy9RTlZ4YFyO" }, "source": [ "from sklearn.model_selection import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25,random_state =0)" ], "execution_count": 11, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "ocZLLSzgYl9V" }, "source": [ "### *Training*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 80 }, "id": "tPSuaammYz_4", "outputId": "a3a5cc02-a37f-41be-d0d6-514872a484e1" }, "source": [ "from sklearn.naive_bayes import GaussianNB\n", "model = GaussianNB()\n", "model.fit(X_train, y_train)" ], "execution_count": 12, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "GaussianNB()" ], "text/html": [ "<style>#sk-container-id-1 {\n", " /* Definition of color scheme common for light and dark mode */\n", " --sklearn-color-text: #000;\n", " --sklearn-color-text-muted: #666;\n", " --sklearn-color-line: gray;\n", " /* Definition of color scheme for unfitted estimators */\n", " --sklearn-color-unfitted-level-0: #fff5e6;\n", " --sklearn-color-unfitted-level-1: #f6e4d2;\n", " --sklearn-color-unfitted-level-2: #ffe0b3;\n", " --sklearn-color-unfitted-level-3: chocolate;\n", " /* Definition of color scheme for fitted estimators */\n", " --sklearn-color-fitted-level-0: #f0f8ff;\n", " --sklearn-color-fitted-level-1: #d4ebff;\n", " --sklearn-color-fitted-level-2: #b3dbfd;\n", " --sklearn-color-fitted-level-3: cornflowerblue;\n", "\n", " /* Specific color for light theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-icon: #696969;\n", "\n", " @media (prefers-color-scheme: dark) {\n", " /* Redefinition of color scheme for dark theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-icon: #878787;\n", " }\n", "}\n", "\n", "#sk-container-id-1 {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "#sk-container-id-1 pre {\n", " padding: 0;\n", "}\n", "\n", "#sk-container-id-1 input.sk-hidden--visually {\n", " border: 0;\n", " clip: rect(1px 1px 1px 1px);\n", " clip: rect(1px, 1px, 1px, 1px);\n", " height: 1px;\n", " margin: -1px;\n", " overflow: hidden;\n", " padding: 0;\n", " position: absolute;\n", " width: 1px;\n", "}\n", "\n", "#sk-container-id-1 div.sk-dashed-wrapped {\n", " border: 1px dashed var(--sklearn-color-line);\n", " margin: 0 0.4em 0.5em 0.4em;\n", " box-sizing: border-box;\n", " padding-bottom: 0.4em;\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "#sk-container-id-1 div.sk-container {\n", " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n", " but bootstrap.min.css set `[hidden] { display: none !important; }`\n", " so we also need the `!important` here to be able to override the\n", " default hidden behavior on the sphinx rendered scikit-learn.org.\n", " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n", " display: inline-block !important;\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-text-repr-fallback {\n", " display: none;\n", "}\n", "\n", "div.sk-parallel-item,\n", "div.sk-serial,\n", "div.sk-item {\n", " /* draw centered vertical line to link estimators */\n", " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n", " background-size: 2px 100%;\n", " background-repeat: no-repeat;\n", " background-position: center center;\n", "}\n", "\n", "/* Parallel-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-parallel-item::after {\n", " content: \"\";\n", " width: 100%;\n", " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n", " flex-grow: 1;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel {\n", " display: flex;\n", " align-items: stretch;\n", " justify-content: center;\n", " background-color: var(--sklearn-color-background);\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n", " align-self: flex-end;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n", " align-self: flex-start;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n", " width: 0;\n", "}\n", "\n", "/* Serial-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-serial {\n", " display: flex;\n", " flex-direction: column;\n", " align-items: center;\n", " background-color: var(--sklearn-color-background);\n", " padding-right: 1em;\n", " padding-left: 1em;\n", "}\n", "\n", "\n", "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n", "clickable and can be expanded/collapsed.\n", "- Pipeline and ColumnTransformer use this feature and define the default style\n", "- Estimators will overwrite some part of the style using the `sk-estimator` class\n", "*/\n", "\n", "/* Pipeline and ColumnTransformer style (default) */\n", "\n", "#sk-container-id-1 div.sk-toggleable {\n", " /* Default theme specific background. It is overwritten whether we have a\n", " specific estimator or a Pipeline/ColumnTransformer */\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "/* Toggleable label */\n", "#sk-container-id-1 label.sk-toggleable__label {\n", " cursor: pointer;\n", " display: flex;\n", " width: 100%;\n", " margin-bottom: 0;\n", " padding: 0.5em;\n", " box-sizing: border-box;\n", " text-align: center;\n", " align-items: start;\n", " justify-content: space-between;\n", " gap: 0.5em;\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label .caption {\n", " font-size: 0.6rem;\n", " font-weight: lighter;\n", " color: var(--sklearn-color-text-muted);\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n", " /* Arrow on the left of the label */\n", " content: \"▸\";\n", " float: left;\n", " margin-right: 0.25em;\n", " color: var(--sklearn-color-icon);\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "/* Toggleable content - dropdown */\n", "\n", "#sk-container-id-1 div.sk-toggleable__content {\n", " max-height: 0;\n", " max-width: 0;\n", " overflow: hidden;\n", " text-align: left;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content pre {\n", " margin: 0.2em;\n", " border-radius: 0.25em;\n", " color: var(--sklearn-color-text);\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n", " /* Expand drop-down */\n", " max-height: 200px;\n", " max-width: 100%;\n", " overflow: auto;\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n", " content: \"▾\";\n", "}\n", "\n", "/* Pipeline/ColumnTransformer-specific style */\n", "\n", "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator-specific style */\n", "\n", "/* Colorize estimator box */\n", "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n", "#sk-container-id-1 div.sk-label label {\n", " /* The background is the default theme color */\n", " color: var(--sklearn-color-text-on-default-background);\n", "}\n", "\n", "/* On hover, darken the color of the background */\n", "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "/* Label box, darken color on hover, fitted */\n", "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator label */\n", "\n", "#sk-container-id-1 div.sk-label label {\n", " font-family: monospace;\n", " font-weight: bold;\n", " display: inline-block;\n", " line-height: 1.2em;\n", "}\n", "\n", "#sk-container-id-1 div.sk-label-container {\n", " text-align: center;\n", "}\n", "\n", "/* Estimator-specific */\n", "#sk-container-id-1 div.sk-estimator {\n", " font-family: monospace;\n", " border: 1px dotted var(--sklearn-color-border-box);\n", " border-radius: 0.25em;\n", " box-sizing: border-box;\n", " margin-bottom: 0.5em;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "/* on hover */\n", "#sk-container-id-1 div.sk-estimator:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n", "\n", "/* Common style for \"i\" and \"?\" */\n", "\n", ".sk-estimator-doc-link,\n", "a:link.sk-estimator-doc-link,\n", "a:visited.sk-estimator-doc-link {\n", " float: right;\n", " font-size: smaller;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1em;\n", " height: 1em;\n", " width: 1em;\n", " text-decoration: none !important;\n", " margin-left: 0.5em;\n", " text-align: center;\n", " /* unfitted */\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-unfitted-level-1);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted,\n", "a:link.sk-estimator-doc-link.fitted,\n", "a:visited.sk-estimator-doc-link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "/* Span, style for the box shown on hovering the info icon */\n", ".sk-estimator-doc-link span {\n", " display: none;\n", " z-index: 9999;\n", " position: relative;\n", " font-weight: normal;\n", " right: .2ex;\n", " padding: .5ex;\n", " margin: .5ex;\n", " width: min-content;\n", " min-width: 20ex;\n", " max-width: 50ex;\n", " color: var(--sklearn-color-text);\n", " box-shadow: 2pt 2pt 4pt #999;\n", " /* unfitted */\n", " background: var(--sklearn-color-unfitted-level-0);\n", " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted span {\n", " /* fitted */\n", " background: var(--sklearn-color-fitted-level-0);\n", " border: var(--sklearn-color-fitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link:hover span {\n", " display: block;\n", "}\n", "\n", "/* \"?\"-specific style due to the `<a>` HTML tag */\n", "\n", "#sk-container-id-1 a.estimator_doc_link {\n", " float: right;\n", " font-size: 1rem;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1rem;\n", " height: 1rem;\n", " width: 1rem;\n", " text-decoration: none;\n", " /* unfitted */\n", " color: var(--sklearn-color-unfitted-level-1);\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "#sk-container-id-1 a.estimator_doc_link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>GaussianNB()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>GaussianNB</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.6/modules/generated/sklearn.naive_bayes.GaussianNB.html\">?<span>Documentation for GaussianNB</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\"><pre>GaussianNB()</pre></div> </div></div></div></div>" ] }, "metadata": {}, "execution_count": 12 } ] }, { "cell_type": "markdown", "metadata": { "id": "v63bNnciZZYS" }, "source": [ "### *Predicting, wheather Person Survived or Not*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "s17AtjCOZeEZ", "outputId": "fb8f0722-4755-463a-b2c7-3761e564e2b3" }, "source": [ "pclassNo = int(input(\"Enter Person's Pclass number: \"))\n", "gender = int(input(\"Enter Person's Gender 0-female 1-male(0 or 1): \"))\n", "age = int(input(\"Enter Person's Age: \"))\n", "fare = float(input(\"Enter Person's Fare: \"))\n", "person = [[pclassNo,gender,age,fare]]\n", "result = model.predict(person)\n", "print(result)\n", "\n", "if result == 1:\n", " print(\"Person might be Survived\")\n", "else:\n", " print(\"Person might not be Survived\")" ], "execution_count": 13, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Enter Person's Pclass number: 20\n", "Enter Person's Gender 0-female 1-male(0 or 1): 0\n", "Enter Person's Age: 43\n", "Enter Person's Fare: 4567\n", "[1]\n", "Person might be Survived\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.11/dist-packages/sklearn/utils/validation.py:2739: UserWarning: X does not have valid feature names, but GaussianNB was fitted with feature names\n", " warnings.warn(\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "1PdvxG-La4H3" }, "source": [ "### *Prediction for all Test Data*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fShPpJ75a6u0", "outputId": "8d96d8c6-14fc-4c3d-fe83-35f22246d155" }, "source": [ "y_pred = model.predict(X_test)\n", "print(np.column_stack((y_pred,y_test)))" ], "execution_count": 14, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [0 1]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 0]\n", " [0 1]\n", " [0 1]\n", " [1 1]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [1 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [0 1]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [1 1]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 1]\n", " [1 0]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 0]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [0 0]\n", " [1 0]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 0]\n", " [0 1]\n", " [1 0]\n", " [1 1]\n", " [0 0]\n", " [0 1]\n", " [1 1]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [1 1]\n", " [0 1]\n", " [0 0]\n", " [0 1]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 1]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [1 1]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [0 0]\n", " [1 0]\n", " [0 0]\n", " [0 0]\n", " [0 0]\n", " [0 1]\n", " [1 0]\n", " [1 1]\n", " [0 0]\n", " [1 1]\n", " [1 1]]\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "lFeW_-qYdszc" }, "source": [ "### *Accuracy of our Model*" ] }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "HDOFRQ0PdzQS", "outputId": "9e0c4bba-ac94-4065-dac9-2e69d47ddebd" }, "source": [ "from sklearn.metrics import accuracy_score\n", "print(\"Accuracy of the Model: {0}%\".format(accuracy_score(y_test, y_pred)*100))" ], "execution_count": 15, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Accuracy of the Model: 77.57847533632287%\n" ] } ] } ] }