![logo](pictures/logo.jpeg) ### 1. Introduction of Deepseek Coder Deepseek Coder comprises a series of advanced language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on various benchmarks. - **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages. - **Highly Flexible & Scalable**: Offered in model sizes of 1B, 7B, and 33B, enabling users to choose the setup most suitable for their requirements. - **Superior Model Performance**: State-of-the-art performance among publicly available code models on [**HumanEval-X**](), [**MBPP**](), [**DS-1000**](), and [**APPS**]() datasets. - **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks. ### 2. Procedure of Data Creation and Model Training #### Data Creation - Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data. - Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies. - Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication. - Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability. ![Data Clean Procedure](pictures/data_clean.png) #### Model Training - Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. This process involves 1.8T tokens and uses a 4K window size. - Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models. - Step 3: Instruction Fine-tuning on 300M tokens of instruction data, resulting in instruction-tuned models. ![Model Pre-training](pictures/model_pretraining.png) ### 3. Download and Setup Deepseek Coder is initially implemented in Pytorch and trained on A100 AI Processors. We provide a torch-compatible version based on hai-llm to facilitate usage on GPU platforms. We also uploaded the checkpoint of models to the 🤗 [hugginface](https://huggingface.co/deepseek-ai/deepseek-coder-7b). #### Setup Python 3.8+ / CUDA 11+ / PyTorch 2.0+ / transformers 3.34+ are required. ### 4. Inference and Evaluation Here give some examples of how to use our model. #### Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b") device = 0 if torch.cuda.is_available() else -1 model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b").to(device) inputs = tokenizer("def hello_world():", return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` #### Code Insertion ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b") device = 0 if torch.cuda.is_available() else -1 model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b").to(device) input_text = "def print_hello_world():\n \n print('Hello world!')" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0])) ``` #### Repository Level Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b") input_text = """#utils.py import torch from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score def load_data(): iris = datasets.load_iris() X = iris.data y = iris.target # Standardize the data scaler = StandardScaler() X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Convert numpy data to PyTorch tensors X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.int64) y_test = torch.tensor(y_test, dtype=torch.int64) return X_train, X_test, y_train, y_test def evaluate_predictions(y_test, y_pred): return accuracy_score(y_test, y_pred) #model.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset class IrisClassifier(nn.Module): def __init__(self): super(IrisClassifier, self).__init__() self.fc = nn.Sequential( nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 3) ) def forward(self, x): return self.fc(x) def train_model(self, X_train, y_train, epochs, lr, batch_size): criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(self.parameters(), lr=lr) # Create DataLoader for batches dataset = TensorDataset(X_train, y_train) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for epoch in range(epochs): for batch_X, batch_y in dataloader: optimizer.zero_grad() outputs = self(batch_X) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() def predict(self, X_test): with torch.no_grad(): outputs = self(X_test) _, predicted = outputs.max(1) return predicted.numpy() #main.py from utils import load_data, evaluate_predictions from model import IrisClassifier def pipeline(): # Model training and evaluation """ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0])) ``` #### Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b") prompt = "write a quick sort algorithm in python." prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.\nWrite a response that appropriately completes the request.\n\n### Instruction:\nWrite a program to perform the given task.\n\nInput:\n{prompt}\n\n### Response:\n""" inputs = tokenizer.encode(prompt, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0])) ``` ### 5. Lincense ### 6. Citation