import argparse import json import os import torch import re from pathlib import Path from tqdm import tqdm data_abs_dir = Path(__file__).parent / "data" from transformers import AutoTokenizer, AutoModelForCausalLM from human_eval.evaluation import evaluate_functional_correctness def read_test_examples(data_path: str): def format_test_example(q, tests, code: str=None): prompt = ">>> Problem:\n{}\n>>> Test Cases:\n{}\n".format(q.strip(), "\n".join(tests)) if code: code = code.replace("\r", "").replace("\t", " ") prompt += "\n>>> Code:\n```python\n{}\n```".format(code) return prompt examples = [json.loads(x) for x in open(data_path)] print("Read all {} examples from {} over!".format(len(examples), data_path)) # test_cases examples_str = [] for i in range(1, 4): ex = examples[i] q, test, code = ex['text'], ex['test_list'], ex['code'] ex_prompt = format_test_example(q, test, code) example_prompt = '- Example {}:\n{}'.format(i, ex_prompt) examples_str += [example_prompt] for i in range(10, 510): ex = examples[i] q, test, code = ex['text'], ex['test_list'], ex['code'] prompt = format_test_example(q, test, code=None) prompt_with_shots = ''' Please refer the given examples and generate a python function for my problem. Examples are listed as follows: {} Here is my problem: {} '''.strip().format('\n\n'.join(examples_str), prompt) yield { 'task_id': ex['task_id'], 'prompt': prompt_with_shots } def convert_for_evaluation(example): gpt_completion = example['gpt_completion'] generation = gpt_completion try: code_block: str = re.findall(f'```python\n(.*?)```', gpt_completion, re.DOTALL | re.IGNORECASE)[0] generation = code_block except Exception as ex: print("Failed to extract codeblock:\n{}".format(gpt_completion)) example['generation'] = generation return example def generate_one(example, tokenizer, model): prompt = example['prompt'] inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" ).to(model.device) stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>") assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found" outputs = model.generate( inputs, max_new_tokens=512, do_sample=False, # top_p=0.95, # temperature=temperature, pad_token_id=stop_id, eos_token_id=stop_id ) output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) # print(output) example['gpt_completion'] = output return convert_for_evaluation(example) def generate_main(args): model_name_or_path = args.model saved_path = args.output_path temp_dir = args.temp_dir os.makedirs(temp_dir, exist_ok=True) problem_file = os.path.join(data_abs_dir, f"mbpp.jsonl") print("model", model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, device_map="auto", ) model.eval() examples = list(read_test_examples(problem_file)) print("Read {} examples for evaluation over.".format(len(examples))) generated_examples = [] for ex in tqdm(examples, desc='Generating'): gen_example = generate_one(ex, tokenizer, model) generated_examples.append(gen_example) print("Generate {}/{} over...".format(len(generated_examples), len(examples))) print("Generate all over!!!") with open(saved_path, 'w', encoding='utf-8') as fw: for ex in generated_examples: fw.write(json.dumps(ex) + '\n') print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path)) result = evaluate_functional_correctness( input_file=saved_path, tmp_dir=temp_dir, problem_file=os.path.join(data_abs_dir, f"mbpp_test.jsonl"), language='python', is_mbpp=True ) print(result, model_name_or_path) pass if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model', type=str, help="model name or path") parser.add_argument('--output_path', type=str, help="output path of your generation") parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp") args = parser.parse_args() os.environ["TOKENIZERS_PARALLELISM"] = "false" generate_main(args) pass