{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
" "
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "I1VRs4tZkbvW"
},
"source": [
"# **Day-12 | Exam mark prediction using Linear Regression-multipleVariable**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SAFLqwkKk8rK"
},
"source": [
"### *Import Libraries*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "EgF2lvr_jzVL"
},
"source": [
"import pandas as pd\n",
"from sklearn.linear_model import LinearRegression"
],
"execution_count": 1,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "XWe_7j6UjxRj"
},
"source": [
"### *Load Dataset from Local Directory*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vKrHCJk_jwfJ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 73
},
"outputId": "110e0b18-ab68-4ac6-9e32-733af1698dcc"
},
"source": [
"from google.colab import files\n",
"uploaded = files.upload()"
],
"execution_count": 2,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
""
],
"text/html": [
"\n",
" \n",
" \n",
" Upload widget is only available when the cell has been executed in the\n",
" current browser session. Please rerun this cell to enable.\n",
" \n",
" "
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Saving data.csv to data.csv\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6gXowmSom462"
},
"source": [
"### *Load Dataset*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "6JLDHSdym6wP"
},
"source": [
"dataset = pd.read_csv('data.csv')"
],
"execution_count": 3,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "-DdkIy1ZnDfA"
},
"source": [
"### *Load Summarize*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "OlElQViRnGFp",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "cfb430ee-c9d1-4ae7-b909-7eaf0fb9f3c5"
},
"source": [
"print(dataset.shape)\n",
"print(dataset.head(5))"
],
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"(201, 4)\n",
" hours age internet marks\n",
"0 6.83 15 1 78.50\n",
"1 6.56 16 0 76.74\n",
"2 NaN 17 1 78.68\n",
"3 5.67 18 0 71.82\n",
"4 8.67 19 1 84.19\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-Zb9xIa-kOx5"
},
"source": [
"### *Finding & Removing NA values from our Features X*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "UwyBQ5nZkTpf",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fbdf10d5-f2b7-4942-a800-d47f2c78eb8a"
},
"source": [
"dataset.columns[dataset.isna().any()]"
],
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['hours'], dtype='object')"
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "8LxSw9aHlJTC"
},
"source": [
"dataset.hours = dataset.hours.fillna(dataset.hours.mean())"
],
"execution_count": 13,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "JRyfB6prpJDP"
},
"source": [
"### *Segregate Dataset into Input X & Output Y*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "x9dQcTohpK1X",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "64f7c047-e8c2-4395-d502-e16b8526f1da"
},
"source": [
"X = dataset.iloc[:, :-1].values\n",
"print(X.shape)\n",
"X"
],
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"(201, 3)\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 6.83 , 15. , 1. ],\n",
" [ 6.56 , 16. , 0. ],\n",
" [ 6.98142857, 17. , 1. ],\n",
" [ 5.67 , 18. , 0. ],\n",
" [ 8.67 , 19. , 1. ],\n",
" [ 7.55 , 20. , 0. ],\n",
" [ 6.67 , 15. , 0. ],\n",
" [ 8.99 , 16. , 0. ],\n",
" [ 5.19 , 17. , 1. ],\n",
" [ 6.75 , 18. , 0. ],\n",
" [ 6.59 , 19. , 0. ],\n",
" [ 8.56 , 20. , 1. ],\n",
" [ 7.75 , 15. , 0. ],\n",
" [ 7.9 , 16. , 1. ],\n",
" [ 8.19 , 17. , 0. ],\n",
" [ 6.55 , 18. , 1. ],\n",
" [ 6.36 , 19. , 0. ],\n",
" [ 8.44 , 20. , 1. ],\n",
" [ 8.41 , 15. , 0. ],\n",
" [ 7.67 , 16. , 1. ],\n",
" [ 7.42 , 17. , 1. ],\n",
" [ 8.16 , 18. , 1. ],\n",
" [ 5.05 , 19. , 1. ],\n",
" [ 5.85 , 20. , 1. ],\n",
" [ 5.45 , 15. , 0. ],\n",
" [ 7.96 , 16. , 0. ],\n",
" [ 6.51 , 17. , 0. ],\n",
" [ 6.73 , 18. , 0. ],\n",
" [ 5.94 , 19. , 1. ],\n",
" [ 7.48 , 20. , 0. ],\n",
" [ 8.13 , 15. , 1. ],\n",
" [ 6.98142857, 16. , 1. ],\n",
" [ 5.4 , 17. , 1. ],\n",
" [ 8.78 , 18. , 0. ],\n",
" [ 8.72 , 19. , 1. ],\n",
" [ 7.1 , 20. , 0. ],\n",
" [ 7.86 , 15. , 1. ],\n",
" [ 7.19 , 16. , 0. ],\n",
" [ 5.62 , 17. , 1. ],\n",
" [ 7.88 , 18. , 0. ],\n",
" [ 5.28 , 19. , 1. ],\n",
" [ 8.92 , 20. , 1. ],\n",
" [ 5.46 , 15. , 0. ],\n",
" [ 8.3 , 16. , 1. ],\n",
" [ 8.09 , 17. , 0. ],\n",
" [ 6.18 , 18. , 1. ],\n",
" [ 7.01 , 19. , 1. ],\n",
" [ 5.01 , 20. , 0. ],\n",
" [ 5.54 , 15. , 1. ],\n",
" [ 5.09 , 16. , 1. ],\n",
" [ 5.09 , 17. , 0. ],\n",
" [ 7.31 , 18. , 1. ],\n",
" [ 8.71 , 19. , 0. ],\n",
" [ 5.52 , 20. , 1. ],\n",
" [ 8.76 , 15. , 0. ],\n",
" [ 8.69 , 16. , 1. ],\n",
" [ 5.75 , 17. , 1. ],\n",
" [ 8.93 , 18. , 1. ],\n",
" [ 5.39 , 19. , 1. ],\n",
" [ 5.65 , 20. , 0. ],\n",
" [ 5.49 , 15. , 1. ],\n",
" [ 7.26 , 16. , 1. ],\n",
" [ 6.35 , 17. , 0. ],\n",
" [ 7.72 , 18. , 1. ],\n",
" [ 8.88 , 19. , 0. ],\n",
" [ 5.45 , 20. , 1. ],\n",
" [ 7.86 , 15. , 1. ],\n",
" [ 8.26 , 16. , 0. ],\n",
" [ 5.07 , 17. , 1. ],\n",
" [ 8.25 , 18. , 0. ],\n",
" [ 5.37 , 19. , 1. ],\n",
" [ 5.11 , 20. , 1. ],\n",
" [ 6.35 , 15. , 0. ],\n",
" [ 7.41 , 16. , 1. ],\n",
" [ 7.31 , 17. , 0. ],\n",
" [ 6.04 , 18. , 1. ],\n",
" [ 5.11 , 19. , 1. ],\n",
" [ 6.56 , 20. , 0. ],\n",
" [ 5.09 , 15. , 1. ],\n",
" [ 5.88 , 16. , 0. ],\n",
" [ 8.34 , 17. , 1. ],\n",
" [ 7.94 , 18. , 0. ],\n",
" [ 6.66 , 19. , 1. ],\n",
" [ 6.01 , 20. , 1. ],\n",
" [ 6.88 , 15. , 0. ],\n",
" [ 5.63 , 16. , 1. ],\n",
" [ 5.88 , 17. , 0. ],\n",
" [ 8.05 , 18. , 1. ],\n",
" [ 5.33 , 19. , 0. ],\n",
" [ 8.79 , 20. , 0. ],\n",
" [ 7.52 , 15. , 1. ],\n",
" [ 8.2 , 16. , 0. ],\n",
" [ 5.44 , 17. , 1. ],\n",
" [ 7.9 , 18. , 0. ],\n",
" [ 7.69 , 19. , 1. ],\n",
" [ 6.09 , 20. , 0. ],\n",
" [ 6.98142857, 15. , 1. ],\n",
" [ 5.2 , 16. , 1. ],\n",
" [ 8.88 , 17. , 0. ],\n",
" [ 8.07 , 18. , 1. ],\n",
" [ 6.24 , 19. , 1. ],\n",
" [ 7.95 , 20. , 0. ],\n",
" [ 8.26 , 15. , 0. ],\n",
" [ 7.31 , 16. , 1. ],\n",
" [ 7.23 , 17. , 1. ],\n",
" [ 6.46 , 18. , 1. ],\n",
" [ 5.34 , 19. , 1. ],\n",
" [ 5.72 , 20. , 1. ],\n",
" [ 5.84 , 15. , 0. ],\n",
" [ 5.02 , 16. , 1. ],\n",
" [ 7.98 , 17. , 0. ],\n",
" [ 6.37 , 18. , 1. ],\n",
" [ 6.92 , 19. , 0. ],\n",
" [ 7.95 , 20. , 1. ],\n",
" [ 7.12 , 15. , 0. ],\n",
" [ 5.79 , 16. , 1. ],\n",
" [ 5.4 , 17. , 0. ],\n",
" [ 8.83 , 18. , 1. ],\n",
" [ 5.69 , 19. , 0. ],\n",
" [ 6.6 , 20. , 1. ],\n",
" [ 6.52 , 15. , 0. ],\n",
" [ 8.31 , 16. , 0. ],\n",
" [ 6.98142857, 17. , 1. ],\n",
" [ 7.62 , 18. , 0. ],\n",
" [ 8.69 , 19. , 1. ],\n",
" [ 8.75 , 20. , 0. ],\n",
" [ 6.46 , 15. , 1. ],\n",
" [ 7.14 , 16. , 1. ],\n",
" [ 6.38 , 17. , 0. ],\n",
" [ 6.33 , 18. , 1. ],\n",
" [ 5.64 , 19. , 0. ],\n",
" [ 5.26 , 20. , 1. ],\n",
" [ 6.83 , 15. , 1. ],\n",
" [ 5.76 , 16. , 0. ],\n",
" [ 6.51 , 17. , 1. ],\n",
" [ 8.33 , 18. , 0. ],\n",
" [ 8.16 , 19. , 1. ],\n",
" [ 5.14 , 20. , 0. ],\n",
" [ 8.71 , 15. , 0. ],\n",
" [ 8.6 , 16. , 1. ],\n",
" [ 8.6 , 17. , 0. ],\n",
" [ 7.43 , 18. , 1. ],\n",
" [ 7.81 , 19. , 1. ],\n",
" [ 6.51 , 20. , 0. ],\n",
" [ 8.11 , 15. , 1. ],\n",
" [ 8.95 , 16. , 0. ],\n",
" [ 7.99 , 17. , 1. ],\n",
" [ 5.92 , 18. , 0. ],\n",
" [ 8.3 , 19. , 1. ],\n",
" [ 8.97 , 20. , 0. ],\n",
" [ 5.39 , 15. , 0. ],\n",
" [ 6.77 , 16. , 0. ],\n",
" [ 8.08 , 17. , 1. ],\n",
" [ 5.24 , 18. , 0. ],\n",
" [ 6.93 , 19. , 1. ],\n",
" [ 5.14 , 20. , 0. ],\n",
" [ 8.39 , 15. , 1. ],\n",
" [ 6.18 , 16. , 0. ],\n",
" [ 7.53 , 17. , 1. ],\n",
" [ 7.86 , 18. , 0. ],\n",
" [ 7.7 , 19. , 1. ],\n",
" [ 7.3 , 20. , 0. ],\n",
" [ 7.79 , 15. , 1. ],\n",
" [ 6.75 , 16. , 0. ],\n",
" [ 7.87 , 17. , 1. ],\n",
" [ 5.38 , 18. , 0. ],\n",
" [ 7.8 , 19. , 1. ],\n",
" [ 5.07 , 20. , 0. ],\n",
" [ 7.95 , 15. , 1. ],\n",
" [ 8.35 , 16. , 0. ],\n",
" [ 5.19 , 17. , 0. ],\n",
" [ 7.19 , 18. , 0. ],\n",
" [ 7.35 , 19. , 1. ],\n",
" [ 5.22 , 20. , 1. ],\n",
" [ 5.39 , 15. , 1. ],\n",
" [ 5.39 , 16. , 1. ],\n",
" [ 8.93 , 17. , 1. ],\n",
" [ 5.79 , 18. , 0. ],\n",
" [ 8.42 , 19. , 1. ],\n",
" [ 7.26 , 20. , 0. ],\n",
" [ 6.97 , 15. , 1. ],\n",
" [ 5.55 , 16. , 1. ],\n",
" [ 8.66 , 17. , 0. ],\n",
" [ 8.61 , 18. , 1. ],\n",
" [ 5.22 , 19. , 1. ],\n",
" [ 8.05 , 20. , 0. ],\n",
" [ 8.87 , 15. , 1. ],\n",
" [ 5.54 , 16. , 0. ],\n",
" [ 6.98142857, 17. , 0. ],\n",
" [ 7.26 , 18. , 1. ],\n",
" [ 5.79 , 19. , 0. ],\n",
" [ 5.22 , 20. , 0. ],\n",
" [ 8.71 , 15. , 1. ],\n",
" [ 7.55 , 16. , 1. ],\n",
" [ 6.35 , 17. , 1. ],\n",
" [ 7.53 , 18. , 0. ],\n",
" [ 8.56 , 19. , 1. ],\n",
" [ 8.94 , 20. , 1. ],\n",
" [ 6.6 , 15. , 1. ],\n",
" [ 8.35 , 16. , 1. ],\n",
" [ 4.15 , 15. , 0. ]])"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "SqxVaBO0pf1W",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "5793f7be-3c73-48d1-ac38-11179a8161fe"
},
"source": [
"Y = dataset.iloc[:, -1].values\n",
"Y"
],
"execution_count": 8,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([78.5 , 76.74, 78.68, 71.82, 84.19, 81.18, 76.99, 85.46, 70.66,\n",
" 77.82, 75.37, 83.88, 79.5 , 80.76, 83.08, 76.03, 76.04, 85.11,\n",
" 82.5 , 80.58, 82.18, 83.36, 70.67, 75.02, 70.96, 83.33, 74.75,\n",
" 75.65, 74.15, 80.17, 82.27, 76.14, 71.1 , 84.35, 83.08, 76.76,\n",
" 81.24, 78.21, 73.08, 83.23, 70.27, 86.41, 71.1 , 82.84, 82.38,\n",
" 72.96, 77.46, 70.11, 72.38, 71.41, 72.22, 77.77, 84.44, 71.45,\n",
" 82.21, 85.48, 75.03, 86.65, 70.9 , 71.7 , 73.61, 79.41, 76.19,\n",
" 80.43, 85.78, 70.06, 81.25, 81.7 , 69.27, 82.79, 71.8 , 71.79,\n",
" 74.97, 78.61, 77.59, 72.33, 72.08, 77.33, 70.05, 73.34, 84. ,\n",
" 82.93, 76.63, 75.36, 77.29, 72.87, 73.4 , 81.74, 71.85, 84.6 ,\n",
" 79.56, 82.1 , 72.08, 79.1 , 81.01, 76.48, 75.39, 68.57, 83.64,\n",
" 82.3 , 75.18, 82.03, 82.99, 79.26, 77.55, 77.07, 72.1 , 73.25,\n",
" 74.25, 70.58, 81.08, 75.04, 76.38, 80.86, 78.42, 74.44, 70.34,\n",
" 85.04, 73.61, 75.55, 76.2 , 82.69, 76.83, 79.53, 83.57, 85.95,\n",
" 76.02, 77.65, 77.01, 74.49, 73.19, 71.86, 75.8 , 72.46, 78.39,\n",
" 83.48, 83.15, 71.22, 85.98, 83.91, 84.58, 80.31, 82.55, 75.52,\n",
" 83.82, 85.15, 82.75, 74.34, 82.02, 86.12, 71.87, 76.7 , 81.7 ,\n",
" 70.78, 78.45, 70.2 , 83.37, 75.52, 81.57, 80.72, 80.81, 79.49,\n",
" 79.17, 77.07, 82.04, 71.94, 81.6 , 70.79, 82.68, 83.08, 71.18,\n",
" 77.63, 77.78, 70.4 , 73.02, 71.11, 85.96, 73.64, 84.24, 78.17,\n",
" 77.19, 71.83, 86.99, 83.87, 71.5 , 79.63, 85.1 , 72.01, 77.27,\n",
" 79.87, 73.14, 70.51, 84.03, 79.64, 74.24, 81.67, 84.68, 86.75,\n",
" 78.05, 83.5 , 81.45])"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KsDoGjjbpmjk"
},
"source": [
"### *Training Dataset using Linear Regression*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "nKmEySI1poV_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 80
},
"outputId": "875ea4c7-b893-4617-bce9-011f7fe33c6d"
},
"source": [
"model = LinearRegression()\n",
"model.fit(X,Y)"
],
"execution_count": 15,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LinearRegression()"
],
"text/html": [
"LinearRegression() In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org. "
]
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "n-UeFqpGpw9p"
},
"source": [
"### *Predicted Price for Land sq.Feet of custom values*"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Ollo3wTcpyKQ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c88cfbbe-6fa4-4be4-e1bc-747df623e40a"
},
"source": [
"a=[[9.2,20,0]]\n",
"PredictedmodelResult = model.predict(a)\n",
"print(PredictedmodelResult)"
],
"execution_count": 16,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[86.26599847]\n"
]
}
]
}
]
}