{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "I1VRs4tZkbvW" }, "source": [ "# **Day-12 | Exam mark prediction using Linear Regression-multipleVariable**" ] }, { "cell_type": "markdown", "metadata": { "id": "SAFLqwkKk8rK" }, "source": [ "### *Import Libraries*" ] }, { "cell_type": "code", "metadata": { "id": "EgF2lvr_jzVL" }, "source": [ "import pandas as pd\n", "from sklearn.linear_model import LinearRegression" ], "execution_count": 1, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "XWe_7j6UjxRj" }, "source": [ "### *Load Dataset from Local Directory*" ] }, { "cell_type": "code", "metadata": { "id": "vKrHCJk_jwfJ", "colab": { "base_uri": "https://localhost:8080/", "height": 73 }, "outputId": "110e0b18-ab68-4ac6-9e32-733af1698dcc" }, "source": [ "from google.colab import files\n", "uploaded = files.upload()" ], "execution_count": 2, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "\n", " \n", " \n", " Upload widget is only available when the cell has been executed in the\n", " current browser session. Please rerun this cell to enable.\n", " \n", " " ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Saving data.csv to data.csv\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "6gXowmSom462" }, "source": [ "### *Load Dataset*" ] }, { "cell_type": "code", "metadata": { "id": "6JLDHSdym6wP" }, "source": [ "dataset = pd.read_csv('data.csv')" ], "execution_count": 3, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "-DdkIy1ZnDfA" }, "source": [ "### *Load Summarize*" ] }, { "cell_type": "code", "metadata": { "id": "OlElQViRnGFp", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "cfb430ee-c9d1-4ae7-b909-7eaf0fb9f3c5" }, "source": [ "print(dataset.shape)\n", "print(dataset.head(5))" ], "execution_count": 4, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "(201, 4)\n", " hours age internet marks\n", "0 6.83 15 1 78.50\n", "1 6.56 16 0 76.74\n", "2 NaN 17 1 78.68\n", "3 5.67 18 0 71.82\n", "4 8.67 19 1 84.19\n" ] } ] }, { "cell_type": "markdown", "metadata": { "id": "-Zb9xIa-kOx5" }, "source": [ "### *Finding & Removing NA values from our Features X*" ] }, { "cell_type": "code", "metadata": { "id": "UwyBQ5nZkTpf", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "fbdf10d5-f2b7-4942-a800-d47f2c78eb8a" }, "source": [ "dataset.columns[dataset.isna().any()]" ], "execution_count": 6, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Index(['hours'], dtype='object')" ] }, "metadata": {}, "execution_count": 6 } ] }, { "cell_type": "code", "metadata": { "id": "8LxSw9aHlJTC" }, "source": [ "dataset.hours = dataset.hours.fillna(dataset.hours.mean())" ], "execution_count": 13, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "JRyfB6prpJDP" }, "source": [ "### *Segregate Dataset into Input X & Output Y*" ] }, { "cell_type": "code", "metadata": { "id": "x9dQcTohpK1X", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "64f7c047-e8c2-4395-d502-e16b8526f1da" }, "source": [ "X = dataset.iloc[:, :-1].values\n", "print(X.shape)\n", "X" ], "execution_count": 14, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "(201, 3)\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "array([[ 6.83 , 15. , 1. ],\n", " [ 6.56 , 16. , 0. ],\n", " [ 6.98142857, 17. , 1. ],\n", " [ 5.67 , 18. , 0. ],\n", " [ 8.67 , 19. , 1. ],\n", " [ 7.55 , 20. , 0. ],\n", " [ 6.67 , 15. , 0. ],\n", " [ 8.99 , 16. , 0. ],\n", " [ 5.19 , 17. , 1. ],\n", " [ 6.75 , 18. , 0. ],\n", " [ 6.59 , 19. , 0. ],\n", " [ 8.56 , 20. , 1. ],\n", " [ 7.75 , 15. , 0. ],\n", " [ 7.9 , 16. , 1. ],\n", " [ 8.19 , 17. , 0. ],\n", " [ 6.55 , 18. , 1. ],\n", " [ 6.36 , 19. , 0. ],\n", " [ 8.44 , 20. , 1. ],\n", " [ 8.41 , 15. , 0. ],\n", " [ 7.67 , 16. , 1. ],\n", " [ 7.42 , 17. , 1. ],\n", " [ 8.16 , 18. , 1. ],\n", " [ 5.05 , 19. , 1. ],\n", " [ 5.85 , 20. , 1. ],\n", " [ 5.45 , 15. , 0. ],\n", " [ 7.96 , 16. , 0. ],\n", " [ 6.51 , 17. , 0. ],\n", " [ 6.73 , 18. , 0. ],\n", " [ 5.94 , 19. , 1. ],\n", " [ 7.48 , 20. , 0. ],\n", " [ 8.13 , 15. , 1. ],\n", " [ 6.98142857, 16. , 1. ],\n", " [ 5.4 , 17. , 1. ],\n", " [ 8.78 , 18. , 0. ],\n", " [ 8.72 , 19. , 1. ],\n", " [ 7.1 , 20. , 0. ],\n", " [ 7.86 , 15. , 1. ],\n", " [ 7.19 , 16. , 0. ],\n", " [ 5.62 , 17. , 1. ],\n", " [ 7.88 , 18. , 0. ],\n", " [ 5.28 , 19. , 1. ],\n", " [ 8.92 , 20. , 1. ],\n", " [ 5.46 , 15. , 0. ],\n", " [ 8.3 , 16. , 1. ],\n", " [ 8.09 , 17. , 0. ],\n", " [ 6.18 , 18. , 1. ],\n", " [ 7.01 , 19. , 1. ],\n", " [ 5.01 , 20. , 0. ],\n", " [ 5.54 , 15. , 1. ],\n", " [ 5.09 , 16. , 1. ],\n", " [ 5.09 , 17. , 0. ],\n", " [ 7.31 , 18. , 1. ],\n", " [ 8.71 , 19. , 0. ],\n", " [ 5.52 , 20. , 1. ],\n", " [ 8.76 , 15. , 0. ],\n", " [ 8.69 , 16. , 1. ],\n", " [ 5.75 , 17. , 1. ],\n", " [ 8.93 , 18. , 1. ],\n", " [ 5.39 , 19. , 1. ],\n", " [ 5.65 , 20. , 0. ],\n", " [ 5.49 , 15. , 1. ],\n", " [ 7.26 , 16. , 1. ],\n", " [ 6.35 , 17. , 0. ],\n", " [ 7.72 , 18. , 1. ],\n", " [ 8.88 , 19. , 0. ],\n", " [ 5.45 , 20. , 1. ],\n", " [ 7.86 , 15. , 1. ],\n", " [ 8.26 , 16. , 0. ],\n", " [ 5.07 , 17. , 1. ],\n", " [ 8.25 , 18. , 0. ],\n", " [ 5.37 , 19. , 1. ],\n", " [ 5.11 , 20. , 1. ],\n", " [ 6.35 , 15. , 0. ],\n", " [ 7.41 , 16. , 1. ],\n", " [ 7.31 , 17. , 0. ],\n", " [ 6.04 , 18. , 1. ],\n", " [ 5.11 , 19. , 1. ],\n", " [ 6.56 , 20. , 0. ],\n", " [ 5.09 , 15. , 1. ],\n", " [ 5.88 , 16. , 0. ],\n", " [ 8.34 , 17. , 1. ],\n", " [ 7.94 , 18. , 0. ],\n", " [ 6.66 , 19. , 1. ],\n", " [ 6.01 , 20. , 1. ],\n", " [ 6.88 , 15. , 0. ],\n", " [ 5.63 , 16. , 1. ],\n", " [ 5.88 , 17. , 0. ],\n", " [ 8.05 , 18. , 1. ],\n", " [ 5.33 , 19. , 0. ],\n", " [ 8.79 , 20. , 0. ],\n", " [ 7.52 , 15. , 1. ],\n", " [ 8.2 , 16. , 0. ],\n", " [ 5.44 , 17. , 1. ],\n", " [ 7.9 , 18. , 0. ],\n", " [ 7.69 , 19. , 1. ],\n", " [ 6.09 , 20. , 0. ],\n", " [ 6.98142857, 15. , 1. ],\n", " [ 5.2 , 16. , 1. ],\n", " [ 8.88 , 17. , 0. ],\n", " [ 8.07 , 18. , 1. ],\n", " [ 6.24 , 19. , 1. ],\n", " [ 7.95 , 20. , 0. ],\n", " [ 8.26 , 15. , 0. ],\n", " [ 7.31 , 16. , 1. ],\n", " [ 7.23 , 17. , 1. ],\n", " [ 6.46 , 18. , 1. ],\n", " [ 5.34 , 19. , 1. ],\n", " [ 5.72 , 20. , 1. ],\n", " [ 5.84 , 15. , 0. ],\n", " [ 5.02 , 16. , 1. ],\n", " [ 7.98 , 17. , 0. ],\n", " [ 6.37 , 18. , 1. ],\n", " [ 6.92 , 19. , 0. ],\n", " [ 7.95 , 20. , 1. ],\n", " [ 7.12 , 15. , 0. ],\n", " [ 5.79 , 16. , 1. ],\n", " [ 5.4 , 17. , 0. ],\n", " [ 8.83 , 18. , 1. ],\n", " [ 5.69 , 19. , 0. ],\n", " [ 6.6 , 20. , 1. ],\n", " [ 6.52 , 15. , 0. ],\n", " [ 8.31 , 16. , 0. ],\n", " [ 6.98142857, 17. , 1. ],\n", " [ 7.62 , 18. , 0. ],\n", " [ 8.69 , 19. , 1. ],\n", " [ 8.75 , 20. , 0. ],\n", " [ 6.46 , 15. , 1. ],\n", " [ 7.14 , 16. , 1. ],\n", " [ 6.38 , 17. , 0. ],\n", " [ 6.33 , 18. , 1. ],\n", " [ 5.64 , 19. , 0. ],\n", " [ 5.26 , 20. , 1. ],\n", " [ 6.83 , 15. , 1. ],\n", " [ 5.76 , 16. , 0. ],\n", " [ 6.51 , 17. , 1. ],\n", " [ 8.33 , 18. , 0. ],\n", " [ 8.16 , 19. , 1. ],\n", " [ 5.14 , 20. , 0. ],\n", " [ 8.71 , 15. , 0. ],\n", " [ 8.6 , 16. , 1. ],\n", " [ 8.6 , 17. , 0. ],\n", " [ 7.43 , 18. , 1. ],\n", " [ 7.81 , 19. , 1. ],\n", " [ 6.51 , 20. , 0. ],\n", " [ 8.11 , 15. , 1. ],\n", " [ 8.95 , 16. , 0. ],\n", " [ 7.99 , 17. , 1. ],\n", " [ 5.92 , 18. , 0. ],\n", " [ 8.3 , 19. , 1. ],\n", " [ 8.97 , 20. , 0. ],\n", " [ 5.39 , 15. , 0. ],\n", " [ 6.77 , 16. , 0. ],\n", " [ 8.08 , 17. , 1. ],\n", " [ 5.24 , 18. , 0. ],\n", " [ 6.93 , 19. , 1. ],\n", " [ 5.14 , 20. , 0. ],\n", " [ 8.39 , 15. , 1. ],\n", " [ 6.18 , 16. , 0. ],\n", " [ 7.53 , 17. , 1. ],\n", " [ 7.86 , 18. , 0. ],\n", " [ 7.7 , 19. , 1. ],\n", " [ 7.3 , 20. , 0. ],\n", " [ 7.79 , 15. , 1. ],\n", " [ 6.75 , 16. , 0. ],\n", " [ 7.87 , 17. , 1. ],\n", " [ 5.38 , 18. , 0. ],\n", " [ 7.8 , 19. , 1. ],\n", " [ 5.07 , 20. , 0. ],\n", " [ 7.95 , 15. , 1. ],\n", " [ 8.35 , 16. , 0. ],\n", " [ 5.19 , 17. , 0. ],\n", " [ 7.19 , 18. , 0. ],\n", " [ 7.35 , 19. , 1. ],\n", " [ 5.22 , 20. , 1. ],\n", " [ 5.39 , 15. , 1. ],\n", " [ 5.39 , 16. , 1. ],\n", " [ 8.93 , 17. , 1. ],\n", " [ 5.79 , 18. , 0. ],\n", " [ 8.42 , 19. , 1. ],\n", " [ 7.26 , 20. , 0. ],\n", " [ 6.97 , 15. , 1. ],\n", " [ 5.55 , 16. , 1. ],\n", " [ 8.66 , 17. , 0. ],\n", " [ 8.61 , 18. , 1. ],\n", " [ 5.22 , 19. , 1. ],\n", " [ 8.05 , 20. , 0. ],\n", " [ 8.87 , 15. , 1. ],\n", " [ 5.54 , 16. , 0. ],\n", " [ 6.98142857, 17. , 0. ],\n", " [ 7.26 , 18. , 1. ],\n", " [ 5.79 , 19. , 0. ],\n", " [ 5.22 , 20. , 0. ],\n", " [ 8.71 , 15. , 1. ],\n", " [ 7.55 , 16. , 1. ],\n", " [ 6.35 , 17. , 1. ],\n", " [ 7.53 , 18. , 0. ],\n", " [ 8.56 , 19. , 1. ],\n", " [ 8.94 , 20. , 1. ],\n", " [ 6.6 , 15. , 1. ],\n", " [ 8.35 , 16. , 1. ],\n", " [ 4.15 , 15. , 0. ]])" ] }, "metadata": {}, "execution_count": 14 } ] }, { "cell_type": "code", "metadata": { "id": "SqxVaBO0pf1W", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "5793f7be-3c73-48d1-ac38-11179a8161fe" }, "source": [ "Y = dataset.iloc[:, -1].values\n", "Y" ], "execution_count": 8, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "array([78.5 , 76.74, 78.68, 71.82, 84.19, 81.18, 76.99, 85.46, 70.66,\n", " 77.82, 75.37, 83.88, 79.5 , 80.76, 83.08, 76.03, 76.04, 85.11,\n", " 82.5 , 80.58, 82.18, 83.36, 70.67, 75.02, 70.96, 83.33, 74.75,\n", " 75.65, 74.15, 80.17, 82.27, 76.14, 71.1 , 84.35, 83.08, 76.76,\n", " 81.24, 78.21, 73.08, 83.23, 70.27, 86.41, 71.1 , 82.84, 82.38,\n", " 72.96, 77.46, 70.11, 72.38, 71.41, 72.22, 77.77, 84.44, 71.45,\n", " 82.21, 85.48, 75.03, 86.65, 70.9 , 71.7 , 73.61, 79.41, 76.19,\n", " 80.43, 85.78, 70.06, 81.25, 81.7 , 69.27, 82.79, 71.8 , 71.79,\n", " 74.97, 78.61, 77.59, 72.33, 72.08, 77.33, 70.05, 73.34, 84. ,\n", " 82.93, 76.63, 75.36, 77.29, 72.87, 73.4 , 81.74, 71.85, 84.6 ,\n", " 79.56, 82.1 , 72.08, 79.1 , 81.01, 76.48, 75.39, 68.57, 83.64,\n", " 82.3 , 75.18, 82.03, 82.99, 79.26, 77.55, 77.07, 72.1 , 73.25,\n", " 74.25, 70.58, 81.08, 75.04, 76.38, 80.86, 78.42, 74.44, 70.34,\n", " 85.04, 73.61, 75.55, 76.2 , 82.69, 76.83, 79.53, 83.57, 85.95,\n", " 76.02, 77.65, 77.01, 74.49, 73.19, 71.86, 75.8 , 72.46, 78.39,\n", " 83.48, 83.15, 71.22, 85.98, 83.91, 84.58, 80.31, 82.55, 75.52,\n", " 83.82, 85.15, 82.75, 74.34, 82.02, 86.12, 71.87, 76.7 , 81.7 ,\n", " 70.78, 78.45, 70.2 , 83.37, 75.52, 81.57, 80.72, 80.81, 79.49,\n", " 79.17, 77.07, 82.04, 71.94, 81.6 , 70.79, 82.68, 83.08, 71.18,\n", " 77.63, 77.78, 70.4 , 73.02, 71.11, 85.96, 73.64, 84.24, 78.17,\n", " 77.19, 71.83, 86.99, 83.87, 71.5 , 79.63, 85.1 , 72.01, 77.27,\n", " 79.87, 73.14, 70.51, 84.03, 79.64, 74.24, 81.67, 84.68, 86.75,\n", " 78.05, 83.5 , 81.45])" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "markdown", "metadata": { "id": "KsDoGjjbpmjk" }, "source": [ "### *Training Dataset using Linear Regression*" ] }, { "cell_type": "code", "metadata": { "id": "nKmEySI1poV_", "colab": { "base_uri": "https://localhost:8080/", "height": 80 }, "outputId": "875ea4c7-b893-4617-bce9-011f7fe33c6d" }, "source": [ "model = LinearRegression()\n", "model.fit(X,Y)" ], "execution_count": 15, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "LinearRegression()" ], "text/html": [ "
LinearRegression()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 15 } ] }, { "cell_type": "markdown", "metadata": { "id": "n-UeFqpGpw9p" }, "source": [ "### *Predicted Price for Land sq.Feet of custom values*" ] }, { "cell_type": "code", "metadata": { "id": "Ollo3wTcpyKQ", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "c88cfbbe-6fa4-4be4-e1bc-747df623e40a" }, "source": [ "a=[[9.2,20,0]]\n", "PredictedmodelResult = model.predict(a)\n", "print(PredictedmodelResult)" ], "execution_count": 16, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[86.26599847]\n" ] } ] } ] }