<p align="center">
<img width="1000px" alt="DeepSeek Coder" src="pictures/logo.jpeg">
</p>
<p align="center"><a href="">[🏠 Homepage]</a> | <a href="">[πŸ€– Chat with DeepSeek Coder] | <a href="">[πŸ€— Models Download]</a> | <a href="">[πŸ“„ δΈ­ζ–‡η‰ˆ]</a> </p>
<hr>

### 1. Introduction of Deepseek Coder

Deepseek Coder comprises a series of advanced language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support  project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks. 

- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
  
- **Highly Flexible & Scalable**: Offered in model sizes of 1B, 7B, and 33B, enabling users to choose the setup most suitable for their requirements.
  
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on [**HumanEval-X**](), [**MultiPL-E**](), [**MBPP**](), [**DS-1000**](), and [**APPS**]() benchmarks.
  
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.

  

### 2. Procedure of Data Creation and Model Training

#### Data Creation

- Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data.
- Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies.
- Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication.
- Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability.

![Data Clean Procedure](pictures/data_clean.png)

#### Model Training

- Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step.
- Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models.
- Step 3: Instruction Fine-tuning on 300M tokens of instruction data, resulting in instruction-tuned models.

![Model Pre-training](pictures/model_pretraining.png)



### 3. Download and Setup
Deepseek Coder is initially implemented in Pytorch and trained on A100 AI Processors. We provide a torch-compatible version based on hai-llm to facilitate usage on GPU platforms. We also uploaded the checkpoint of models to the πŸ€— [huggingface](https://huggingface.co/deepseek-ai/deepseek-coder-7b).
#### Setup
Python 3.8+ / CUDA 11+ / PyTorch 2.0+ / transformers 3.34+ are required.
### 4. Inference and Evaluation
Here give some examples of how to use our model.
#### Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
device = 2 if torch.cuda.is_available() else -1
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
This code will output the following result:
```
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
    for i in range(1, len(arr)):
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)
```

#### Code Insertion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
device = 2 if torch.cuda.is_available() else -1
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
input_text = """<fim_prefix>def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = []
    right = []
<fim_middle>
        if arr[i] < pivot:
            left.append(arr[i])
        else:
            right.append(arr[i])
    return quick_sort(left) + [pivot] + quick_sort(right)<fim_suffix>"""
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
```
This code will output the following result:
```
   for i in range(1, len(arr)):
```
#### Repository Level Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
device = 2 if torch.cuda.is_available() else -1

tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)

input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

def load_data():
    iris = datasets.load_iris()
    X = iris.data
    y = iris.target

    # Standardize the data
    scaler = StandardScaler()
    X = scaler.fit_transform(X)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

    # Convert numpy data to PyTorch tensors
    X_train = torch.tensor(X_train, dtype=torch.float32)
    X_test = torch.tensor(X_test, dtype=torch.float32)
    y_train = torch.tensor(y_train, dtype=torch.int64)
    y_test = torch.tensor(y_test, dtype=torch.int64)
    
    return X_train, X_test, y_train, y_test

def evaluate_predictions(y_test, y_pred):
    return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset

class IrisClassifier(nn.Module):
    def __init__(self):
        super(IrisClassifier, self).__init__()
        self.fc = nn.Sequential(
            nn.Linear(4, 16),
            nn.ReLU(),
            nn.Linear(16, 3)
        )

    def forward(self, x):
        return self.fc(x)

    def train_model(self, X_train, y_train, epochs, lr, batch_size):
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(self.parameters(), lr=lr)
        
        # Create DataLoader for batches
        dataset = TensorDataset(X_train, y_train)
        dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

        for epoch in range(epochs):
            for batch_X, batch_y in dataloader:
                optimizer.zero_grad()
                outputs = self(batch_X)
                loss = criterion(outputs, batch_y)
                loss.backward()
                optimizer.step()

    def predict(self, X_test):
        with torch.no_grad():
            outputs = self(X_test)
            _, predicted = outputs.max(1)
        return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier

def main():
    # Model training and evaluation
"""
inputs = tokenizer(input_text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))
```

---
In the following scenario, the Deepseek-Coder 7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation.

![Completion GIF](pictures/completion_demo.gif)

#### Chat Model Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b")
prompt = "write a quick sort algorithm in python."
prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.\nWrite a response that appropriately completes the request.\n\n### Instruction:\nWrite a program to perform the given task.\n\nInput:\n{prompt}\n\n### Response:\n"""
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0]))
```
### 5. Lincense

### 6. Citation