DeepSeek Coder

[ Homepage] | [🤖 Chat with DeepSeek Coder] | [🤗 Models Download] | [📄 中文版]


### 1. Introduction of Deepseek Coder Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks. result - **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages. - **Highly Flexible & Scalable**: Offered in model sizes of 1B, 7B, and 33B, enabling users to choose the setup most suitable for their requirements. - **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks. - **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks. ### 2. Procedure of Data Creation and Model Training #### Data Creation - Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data. - Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies. - Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication. - Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability. - data_creation #### Model Training - Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step. - Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models (**DeepSeek-Coder-Base**). - Step 3: Instruction Fine-tuning on 2B tokens of instruction data, resulting in instruction-tuned models (**DeepSeek-Coder-Instruct**). model_pretraining ### 3. Download and Setup We provide a torch-compatible version based on hai-llm to facilitate usage on GPU platforms, and you can download model checkpoints from [huggingface](https://huggingface.co/deepseek-ai). #### Setup Python 3.8+ / CUDA 11+ / PyTorch 2.0+ / transformers 3.34+ are required. ### 4. Inference and Evaluation Here give some examples of how to use our model. #### 1)Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = "#write a quick sort algorithm" inputs = tokenizer(input_text, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` This code will output the following result: ``` def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] for i in range(1, len(arr)): if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right) ``` #### 2)Code Insertion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = """def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)""" inputs = tokenizer(input_text, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) ``` This code will output the following result: ``` for i in range(1, len(arr)): ``` #### 3)Repository Level Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = """#utils.py import torch from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score def load_data(): iris = datasets.load_iris() X = iris.data y = iris.target # Standardize the data scaler = StandardScaler() X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Convert numpy data to PyTorch tensors X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.int64) y_test = torch.tensor(y_test, dtype=torch.int64) return X_train, X_test, y_train, y_test def evaluate_predictions(y_test, y_pred): return accuracy_score(y_test, y_pred) #model.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset class IrisClassifier(nn.Module): def __init__(self): super(IrisClassifier, self).__init__() self.fc = nn.Sequential( nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 3) ) def forward(self, x): return self.fc(x) def train_model(self, X_train, y_train, epochs, lr, batch_size): criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(self.parameters(), lr=lr) # Create DataLoader for batches dataset = TensorDataset(X_train, y_train) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for epoch in range(epochs): for batch_X, batch_y in dataloader: optimizer.zero_grad() outputs = self(batch_X) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() def predict(self, X_test): with torch.no_grad(): outputs = self(X_test) _, predicted = outputs.max(1) return predicted.numpy() #main.py from utils import load_data, evaluate_predictions from model import IrisClassifier as Classifier def main(): # Model training and evaluation """ inputs = tokenizer(input_text, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_new_tokens=140) print(tokenizer.decode(outputs[0])) ``` --- In the following scenario, the Deepseek-Coder 7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation. ![Completion GIF](pictures/completion_demo.gif) #### 4)Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() prompt = "write a quick sort algorithm in python." prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.\nWrite a response that appropriately completes the request.\n\n### Instruction:\nWrite a program to perform the given task.\n\nInput:\n{prompt}\n\n### Response:\n""" inputs = tokenizer.encode(prompt, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0])) ``` ### 5. Evaluation Results The reproducible code for the following evaluation results can be found in the Evaluation directory. #### 1) [HumanEval](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation/HumanEval) Multilingual Base Models | Model | Size | Python | C++ | Java | PHP | TS | C# | Bash | JS | Avg | | ------------------- | ---- | ------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | | code-cushman-001 | 12B | 33.5% | 31.9% | 30.6% | 28.9% | 31.3% | 22.1% | 11.7% | - | - | | CodeShell | 7B | 35.4% | 32.9% | 34.2% | 31.7% | 30.2% | 38.0% | 7.0% | 33.5% | 30.4% | | CodeGeeX2 | 6B | 36.0% | 29.2% | 25.9% | 23.6% | 20.8% | 29.7% | 6.3% | 24.8% | 24.5% | | StarCoderBase | 16B | 31.7% | 31.1% | 28.5% | 25.4% | 34.0% | 34.8% | 8.9% | 29.8% | 28.0% | | CodeLLama | 7B | 31.7% | 29.8% | 34.2% | 23.6% | 36.5% | 36.7% | 12.0% | 29.2% | 29.2% | | CodeLLama | 13B | 36.0% | 37.9% | 38.0% | 34.2% | 45.2% | 43.0% | 16.5% | 32.3% | 35.4% | | CodeLLama | 34B | 48.2% | 44.7% | 44.9% | 41.0% | 42.1% | 48.7% | 15.8% | 42.2% | 41.0% | | | | | | | | | | | | | | DeepSeek-Coder-Base | 1B | 34.8% | 31.1% | 32.3% | 24.2% | 28.9% | 36.7% | 10.1% | 28.6% | 28.3% | | DeepSeek-Coder-Base | 7B | 49.4% | 50.3% | 43.0% | 38.5% | 49.7% | 50.0% | 28.5% | 48.4% | 44.7% | | DeepSeek-Coder-Base | 33B | - | - | - | - | - | - | - | - | - | Instruction-Tuned Models | Model | Size | Python | C++ | Java | PHP | TS | C# | Bash | JS | Avg | | ------------------- | ---- | ------ | ----- | ----- | ----- | ----- | ----- | ----- | ----- | ----- | | ChatGPT | - | 70.7% | 50.3% | 54.5% | 52.2% | 62.3% | 64.6% | 34.8% | 60.9% | 52.2% | | GPT-4 | - | 82.3% | 70.2% | 74.8% | 70.8% | 73.0% | 77.9% | 51.3% | 83.2% | 72.9% | | WizardCoder | 16B | 51.8% | 41.6% | 41.1% | 42.2% | 44.7% | 46.8% | 12.7% | 42.8% | 40.5% | | Phind-CodeLlama | 34B | - | - | - | - | - | - | - | - | - | | | | | | | | | | | | | | DeepSeek-Coder-Instruct | 1B | - | - | - | - | - | - | - | - | - | | DeepSeek-Coder-Instruct | 7B | - | - | - | - | - | - | - | - | - | | DeepSeek-Coder-Instruct | 33B | - | - | - | - | - | - | - | - | - | #### 2) [Math Reasoning](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation/PAL-Math) Multilingual Base Models | Model | Size | GSM8k | MATH | GSM-Hard | SVAMP | TabMWP | ASDiv | MAWPS | Avg | | -------------- | ---- | ----- | ----- | -------- | ----- | ------ | ----- | ----- | ----- | | CodeShell | 7B | 17.0% | 9.1% | 18.2% | 45.6% | 29.6% | 46.6% | 56.8% | 31.8% | | CodeGeex-2 | 7B | 23.6% | 9.6% | 22.4% | 48.0% | 47.2% | 46.9% | 66.0% | 37.7% | | StarCoder-Base | 16B | 27.3% | 11.5% | 24.2% | 44.0% | 45.6% | 54.9% | 73.4% | 40.1% | | CodeLLama-Base | 7B | 36.4% | 12.3% | 29.7% | 57.6% | 58.4% | 59.6% | 82.6% | 48.0% | | CodeLLama-Base | 13B | 44.2% | 15.5% | 42.4% | 65.6% | 61.6% | 65.3% | 85.3% | 54.3% | | CodeLLama-Base | 34B | 58.2% | 22.1% | 55.2% | 77.2% | 69.6% | 70.0% | 92.8% | 63.6% | | | | | | | | | | | | | DeepSeek-Coder-Base | 1B | 17.0% | 13.4% | 13.3% | 39.2% | 42.4% | 44.8% | 66.0% | 33.7% | | DeepSeek-Coder-Base | 7B | 46.0% | 20.6% | 40.0% | 67.2% | 71.2% | 67.1% | 89.1% | 57.3% | | DeepSeek-Coder-Base | 33B | - | - | - | - | - | - | - | - | Instruction-Tuned Models | Model | Size | GSM8k | MATH | GSM-Hard | SVAMP | TabMWP | ASDiv | MAWPS | Avg | | ------------- | ---- | ----- | ----- | -------- | ----- | ------ | ----- | ----- | ----- | | ChatGPT | - | 78.6% | 38.7% | 67.6% | 77.8% | 79.9% | 81.0% | 89.4% | 73.3% | | GPT-4 | - | 94.2% | 51.8% | 77.6% | 94.8% | 95.9% | 92.6% | 97.7% | 86.4% | | | | | | | | | | | | | DeepSeek-Coder-Instruct | 1B | - | - | - | - | - | - | - | - | | DeepSeek-Coder-Instruct | 7B | - | - | - | - | - | - | - | - | | DeepSeek-Coder-Instruct | 33B | - | - | - | - | - | - | - | - | ### 6. Lincense ### 7. Contact If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).