{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "authorship_tag": "ABX9TyPEBJ6UnJGiLAl/F4VbQEn/",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/Orrm23/DeepSeek-Coder/blob/main/breastcancer_6.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "4BYhNI_DVlrd"
      },
      "outputs": [],
      "source": []
    },
    {
      "source": [
        "from IPython import get_ipython\n",
        "from IPython.display import display\n",
        "import numpy as np\n",
        "import pandas as pd\n",
        "import matplotlib.pyplot as plt\n",
        "from sklearn.model_selection import train_test_split\n",
        "from google.colab import files\n",
        "from sklearn.preprocessing import LabelEncoder\n",
        "from xgboost import XGBClassifier\n",
        "from sklearn.metrics import confusion_matrix, accuracy_score\n",
        "from sklearn.model_selection import cross_val_score"
      ],
      "cell_type": "code",
      "metadata": {
        "id": "x58skzkAVrK9"
      },
      "execution_count": 1,
      "outputs": []
    },
    {
      "source": [
        "# Load Dataset from Local Directory\n",
        "uploaded = files.upload()\n",
        "\n",
        "# Importing the dataset\n",
        "dataset = pd.read_csv('dataset.csv')\n",
        "print(dataset.shape)\n",
        "print(dataset.head(5))"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 460
        },
        "id": "Wv58GcVQVsAP",
        "outputId": "1c7e07ef-7408-4d02-fcc4-54546265d3e3"
      },
      "execution_count": 2,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.HTML object>"
            ],
            "text/html": [
              "\n",
              "     <input type=\"file\" id=\"files-ef8610b6-acb8-41d0-a661-c5cae3267288\" name=\"files[]\" multiple disabled\n",
              "        style=\"border:none\" />\n",
              "     <output id=\"result-ef8610b6-acb8-41d0-a661-c5cae3267288\">\n",
              "      Upload widget is only available when the cell has been executed in the\n",
              "      current browser session. Please rerun this cell to enable.\n",
              "      </output>\n",
              "      <script>// Copyright 2017 Google LLC\n",
              "//\n",
              "// Licensed under the Apache License, Version 2.0 (the \"License\");\n",
              "// you may not use this file except in compliance with the License.\n",
              "// You may obtain a copy of the License at\n",
              "//\n",
              "//      http://www.apache.org/licenses/LICENSE-2.0\n",
              "//\n",
              "// Unless required by applicable law or agreed to in writing, software\n",
              "// distributed under the License is distributed on an \"AS IS\" BASIS,\n",
              "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
              "// See the License for the specific language governing permissions and\n",
              "// limitations under the License.\n",
              "\n",
              "/**\n",
              " * @fileoverview Helpers for google.colab Python module.\n",
              " */\n",
              "(function(scope) {\n",
              "function span(text, styleAttributes = {}) {\n",
              "  const element = document.createElement('span');\n",
              "  element.textContent = text;\n",
              "  for (const key of Object.keys(styleAttributes)) {\n",
              "    element.style[key] = styleAttributes[key];\n",
              "  }\n",
              "  return element;\n",
              "}\n",
              "\n",
              "// Max number of bytes which will be uploaded at a time.\n",
              "const MAX_PAYLOAD_SIZE = 100 * 1024;\n",
              "\n",
              "function _uploadFiles(inputId, outputId) {\n",
              "  const steps = uploadFilesStep(inputId, outputId);\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  // Cache steps on the outputElement to make it available for the next call\n",
              "  // to uploadFilesContinue from Python.\n",
              "  outputElement.steps = steps;\n",
              "\n",
              "  return _uploadFilesContinue(outputId);\n",
              "}\n",
              "\n",
              "// This is roughly an async generator (not supported in the browser yet),\n",
              "// where there are multiple asynchronous steps and the Python side is going\n",
              "// to poll for completion of each step.\n",
              "// This uses a Promise to block the python side on completion of each step,\n",
              "// then passes the result of the previous step as the input to the next step.\n",
              "function _uploadFilesContinue(outputId) {\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  const steps = outputElement.steps;\n",
              "\n",
              "  const next = steps.next(outputElement.lastPromiseValue);\n",
              "  return Promise.resolve(next.value.promise).then((value) => {\n",
              "    // Cache the last promise value to make it available to the next\n",
              "    // step of the generator.\n",
              "    outputElement.lastPromiseValue = value;\n",
              "    return next.value.response;\n",
              "  });\n",
              "}\n",
              "\n",
              "/**\n",
              " * Generator function which is called between each async step of the upload\n",
              " * process.\n",
              " * @param {string} inputId Element ID of the input file picker element.\n",
              " * @param {string} outputId Element ID of the output display.\n",
              " * @return {!Iterable<!Object>} Iterable of next steps.\n",
              " */\n",
              "function* uploadFilesStep(inputId, outputId) {\n",
              "  const inputElement = document.getElementById(inputId);\n",
              "  inputElement.disabled = false;\n",
              "\n",
              "  const outputElement = document.getElementById(outputId);\n",
              "  outputElement.innerHTML = '';\n",
              "\n",
              "  const pickedPromise = new Promise((resolve) => {\n",
              "    inputElement.addEventListener('change', (e) => {\n",
              "      resolve(e.target.files);\n",
              "    });\n",
              "  });\n",
              "\n",
              "  const cancel = document.createElement('button');\n",
              "  inputElement.parentElement.appendChild(cancel);\n",
              "  cancel.textContent = 'Cancel upload';\n",
              "  const cancelPromise = new Promise((resolve) => {\n",
              "    cancel.onclick = () => {\n",
              "      resolve(null);\n",
              "    };\n",
              "  });\n",
              "\n",
              "  // Wait for the user to pick the files.\n",
              "  const files = yield {\n",
              "    promise: Promise.race([pickedPromise, cancelPromise]),\n",
              "    response: {\n",
              "      action: 'starting',\n",
              "    }\n",
              "  };\n",
              "\n",
              "  cancel.remove();\n",
              "\n",
              "  // Disable the input element since further picks are not allowed.\n",
              "  inputElement.disabled = true;\n",
              "\n",
              "  if (!files) {\n",
              "    return {\n",
              "      response: {\n",
              "        action: 'complete',\n",
              "      }\n",
              "    };\n",
              "  }\n",
              "\n",
              "  for (const file of files) {\n",
              "    const li = document.createElement('li');\n",
              "    li.append(span(file.name, {fontWeight: 'bold'}));\n",
              "    li.append(span(\n",
              "        `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n",
              "        `last modified: ${\n",
              "            file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n",
              "                                    'n/a'} - `));\n",
              "    const percent = span('0% done');\n",
              "    li.appendChild(percent);\n",
              "\n",
              "    outputElement.appendChild(li);\n",
              "\n",
              "    const fileDataPromise = new Promise((resolve) => {\n",
              "      const reader = new FileReader();\n",
              "      reader.onload = (e) => {\n",
              "        resolve(e.target.result);\n",
              "      };\n",
              "      reader.readAsArrayBuffer(file);\n",
              "    });\n",
              "    // Wait for the data to be ready.\n",
              "    let fileData = yield {\n",
              "      promise: fileDataPromise,\n",
              "      response: {\n",
              "        action: 'continue',\n",
              "      }\n",
              "    };\n",
              "\n",
              "    // Use a chunked sending to avoid message size limits. See b/62115660.\n",
              "    let position = 0;\n",
              "    do {\n",
              "      const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n",
              "      const chunk = new Uint8Array(fileData, position, length);\n",
              "      position += length;\n",
              "\n",
              "      const base64 = btoa(String.fromCharCode.apply(null, chunk));\n",
              "      yield {\n",
              "        response: {\n",
              "          action: 'append',\n",
              "          file: file.name,\n",
              "          data: base64,\n",
              "        },\n",
              "      };\n",
              "\n",
              "      let percentDone = fileData.byteLength === 0 ?\n",
              "          100 :\n",
              "          Math.round((position / fileData.byteLength) * 100);\n",
              "      percent.textContent = `${percentDone}% done`;\n",
              "\n",
              "    } while (position < fileData.byteLength);\n",
              "  }\n",
              "\n",
              "  // All done.\n",
              "  yield {\n",
              "    response: {\n",
              "      action: 'complete',\n",
              "    }\n",
              "  };\n",
              "}\n",
              "\n",
              "scope.google = scope.google || {};\n",
              "scope.google.colab = scope.google.colab || {};\n",
              "scope.google.colab._files = {\n",
              "  _uploadFiles,\n",
              "  _uploadFilesContinue,\n",
              "};\n",
              "})(self);\n",
              "</script> "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Saving dataset.csv to dataset.csv\n",
            "(683, 11)\n",
            "   Sample code number  Clump Thickness  Uniformity of Cell Size  \\\n",
            "0             1000025                5                        1   \n",
            "1             1002945                5                        4   \n",
            "2             1015425                3                        1   \n",
            "3             1016277                6                        8   \n",
            "4             1017023                4                        1   \n",
            "\n",
            "   Uniformity of Cell Shape  Marginal Adhesion  Single Epithelial Cell Size  \\\n",
            "0                         1                  1                            2   \n",
            "1                         4                  5                            7   \n",
            "2                         1                  1                            2   \n",
            "3                         8                  1                            3   \n",
            "4                         1                  3                            2   \n",
            "\n",
            "   Bare Nuclei  Bland Chromatin  Normal Nucleoli  Mitoses  Class  \n",
            "0            1                3                1        1      2  \n",
            "1           10                3                2        1      2  \n",
            "2            2                3                1        1      2  \n",
            "3            4                3                7        1      2  \n",
            "4            1                3                1        1      2  \n"
          ]
        }
      ]
    },
    {
      "source": [
        "# Segregating Dataset\n",
        "X = dataset.iloc[:, :-1].values\n",
        "y = dataset.iloc[:, -1].values\n",
        "\n",
        "# Encode the target variable 'y'\n",
        "le = LabelEncoder()\n",
        "y = le.fit_transform(y)\n",
        "\n",
        "# Splitting Dataset into Train & Test\n",
        "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)"
      ],
      "cell_type": "code",
      "metadata": {
        "id": "RcSmj6qPVs6C"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "source": [
        "# Training with XGBoost\n",
        "classifier = XGBClassifier()\n",
        "classifier.fit(X_train, y_train)"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 254
        },
        "id": "kikaoHatVvp7",
        "outputId": "37c5e300-7dd3-459b-9d2f-11f86aececa5"
      },
      "execution_count": 4,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
              "              colsample_bylevel=None, colsample_bynode=None,\n",
              "              colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
              "              enable_categorical=False, eval_metric=None, feature_types=None,\n",
              "              gamma=None, grow_policy=None, importance_type=None,\n",
              "              interaction_constraints=None, learning_rate=None, max_bin=None,\n",
              "              max_cat_threshold=None, max_cat_to_onehot=None,\n",
              "              max_delta_step=None, max_depth=None, max_leaves=None,\n",
              "              min_child_weight=None, missing=nan, monotone_constraints=None,\n",
              "              multi_strategy=None, n_estimators=None, n_jobs=None,\n",
              "              num_parallel_tree=None, random_state=None, ...)"
            ],
            "text/html": [
              "<style>#sk-container-id-1 {\n",
              "  /* Definition of color scheme common for light and dark mode */\n",
              "  --sklearn-color-text: #000;\n",
              "  --sklearn-color-text-muted: #666;\n",
              "  --sklearn-color-line: gray;\n",
              "  /* Definition of color scheme for unfitted estimators */\n",
              "  --sklearn-color-unfitted-level-0: #fff5e6;\n",
              "  --sklearn-color-unfitted-level-1: #f6e4d2;\n",
              "  --sklearn-color-unfitted-level-2: #ffe0b3;\n",
              "  --sklearn-color-unfitted-level-3: chocolate;\n",
              "  /* Definition of color scheme for fitted estimators */\n",
              "  --sklearn-color-fitted-level-0: #f0f8ff;\n",
              "  --sklearn-color-fitted-level-1: #d4ebff;\n",
              "  --sklearn-color-fitted-level-2: #b3dbfd;\n",
              "  --sklearn-color-fitted-level-3: cornflowerblue;\n",
              "\n",
              "  /* Specific color for light theme */\n",
              "  --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
              "  --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
              "  --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
              "  --sklearn-color-icon: #696969;\n",
              "\n",
              "  @media (prefers-color-scheme: dark) {\n",
              "    /* Redefinition of color scheme for dark theme */\n",
              "    --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
              "    --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
              "    --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
              "    --sklearn-color-icon: #878787;\n",
              "  }\n",
              "}\n",
              "\n",
              "#sk-container-id-1 {\n",
              "  color: var(--sklearn-color-text);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 pre {\n",
              "  padding: 0;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 input.sk-hidden--visually {\n",
              "  border: 0;\n",
              "  clip: rect(1px 1px 1px 1px);\n",
              "  clip: rect(1px, 1px, 1px, 1px);\n",
              "  height: 1px;\n",
              "  margin: -1px;\n",
              "  overflow: hidden;\n",
              "  padding: 0;\n",
              "  position: absolute;\n",
              "  width: 1px;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-dashed-wrapped {\n",
              "  border: 1px dashed var(--sklearn-color-line);\n",
              "  margin: 0 0.4em 0.5em 0.4em;\n",
              "  box-sizing: border-box;\n",
              "  padding-bottom: 0.4em;\n",
              "  background-color: var(--sklearn-color-background);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-container {\n",
              "  /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
              "     but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
              "     so we also need the `!important` here to be able to override the\n",
              "     default hidden behavior on the sphinx rendered scikit-learn.org.\n",
              "     See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
              "  display: inline-block !important;\n",
              "  position: relative;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-text-repr-fallback {\n",
              "  display: none;\n",
              "}\n",
              "\n",
              "div.sk-parallel-item,\n",
              "div.sk-serial,\n",
              "div.sk-item {\n",
              "  /* draw centered vertical line to link estimators */\n",
              "  background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
              "  background-size: 2px 100%;\n",
              "  background-repeat: no-repeat;\n",
              "  background-position: center center;\n",
              "}\n",
              "\n",
              "/* Parallel-specific style estimator block */\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel-item::after {\n",
              "  content: \"\";\n",
              "  width: 100%;\n",
              "  border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
              "  flex-grow: 1;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel {\n",
              "  display: flex;\n",
              "  align-items: stretch;\n",
              "  justify-content: center;\n",
              "  background-color: var(--sklearn-color-background);\n",
              "  position: relative;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel-item {\n",
              "  display: flex;\n",
              "  flex-direction: column;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
              "  align-self: flex-end;\n",
              "  width: 50%;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
              "  align-self: flex-start;\n",
              "  width: 50%;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
              "  width: 0;\n",
              "}\n",
              "\n",
              "/* Serial-specific style estimator block */\n",
              "\n",
              "#sk-container-id-1 div.sk-serial {\n",
              "  display: flex;\n",
              "  flex-direction: column;\n",
              "  align-items: center;\n",
              "  background-color: var(--sklearn-color-background);\n",
              "  padding-right: 1em;\n",
              "  padding-left: 1em;\n",
              "}\n",
              "\n",
              "\n",
              "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
              "clickable and can be expanded/collapsed.\n",
              "- Pipeline and ColumnTransformer use this feature and define the default style\n",
              "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
              "*/\n",
              "\n",
              "/* Pipeline and ColumnTransformer style (default) */\n",
              "\n",
              "#sk-container-id-1 div.sk-toggleable {\n",
              "  /* Default theme specific background. It is overwritten whether we have a\n",
              "  specific estimator or a Pipeline/ColumnTransformer */\n",
              "  background-color: var(--sklearn-color-background);\n",
              "}\n",
              "\n",
              "/* Toggleable label */\n",
              "#sk-container-id-1 label.sk-toggleable__label {\n",
              "  cursor: pointer;\n",
              "  display: flex;\n",
              "  width: 100%;\n",
              "  margin-bottom: 0;\n",
              "  padding: 0.5em;\n",
              "  box-sizing: border-box;\n",
              "  text-align: center;\n",
              "  align-items: start;\n",
              "  justify-content: space-between;\n",
              "  gap: 0.5em;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 label.sk-toggleable__label .caption {\n",
              "  font-size: 0.6rem;\n",
              "  font-weight: lighter;\n",
              "  color: var(--sklearn-color-text-muted);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
              "  /* Arrow on the left of the label */\n",
              "  content: \"▸\";\n",
              "  float: left;\n",
              "  margin-right: 0.25em;\n",
              "  color: var(--sklearn-color-icon);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
              "  color: var(--sklearn-color-text);\n",
              "}\n",
              "\n",
              "/* Toggleable content - dropdown */\n",
              "\n",
              "#sk-container-id-1 div.sk-toggleable__content {\n",
              "  max-height: 0;\n",
              "  max-width: 0;\n",
              "  overflow: hidden;\n",
              "  text-align: left;\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-0);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-0);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-toggleable__content pre {\n",
              "  margin: 0.2em;\n",
              "  border-radius: 0.25em;\n",
              "  color: var(--sklearn-color-text);\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-0);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-0);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
              "  /* Expand drop-down */\n",
              "  max-height: 200px;\n",
              "  max-width: 100%;\n",
              "  overflow: auto;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
              "  content: \"▾\";\n",
              "}\n",
              "\n",
              "/* Pipeline/ColumnTransformer-specific style */\n",
              "\n",
              "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
              "  color: var(--sklearn-color-text);\n",
              "  background-color: var(--sklearn-color-unfitted-level-2);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
              "  background-color: var(--sklearn-color-fitted-level-2);\n",
              "}\n",
              "\n",
              "/* Estimator-specific style */\n",
              "\n",
              "/* Colorize estimator box */\n",
              "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-2);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-2);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
              "#sk-container-id-1 div.sk-label label {\n",
              "  /* The background is the default theme color */\n",
              "  color: var(--sklearn-color-text-on-default-background);\n",
              "}\n",
              "\n",
              "/* On hover, darken the color of the background */\n",
              "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
              "  color: var(--sklearn-color-text);\n",
              "  background-color: var(--sklearn-color-unfitted-level-2);\n",
              "}\n",
              "\n",
              "/* Label box, darken color on hover, fitted */\n",
              "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
              "  color: var(--sklearn-color-text);\n",
              "  background-color: var(--sklearn-color-fitted-level-2);\n",
              "}\n",
              "\n",
              "/* Estimator label */\n",
              "\n",
              "#sk-container-id-1 div.sk-label label {\n",
              "  font-family: monospace;\n",
              "  font-weight: bold;\n",
              "  display: inline-block;\n",
              "  line-height: 1.2em;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-label-container {\n",
              "  text-align: center;\n",
              "}\n",
              "\n",
              "/* Estimator-specific */\n",
              "#sk-container-id-1 div.sk-estimator {\n",
              "  font-family: monospace;\n",
              "  border: 1px dotted var(--sklearn-color-border-box);\n",
              "  border-radius: 0.25em;\n",
              "  box-sizing: border-box;\n",
              "  margin-bottom: 0.5em;\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-0);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-estimator.fitted {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-0);\n",
              "}\n",
              "\n",
              "/* on hover */\n",
              "#sk-container-id-1 div.sk-estimator:hover {\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-2);\n",
              "}\n",
              "\n",
              "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-2);\n",
              "}\n",
              "\n",
              "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
              "\n",
              "/* Common style for \"i\" and \"?\" */\n",
              "\n",
              ".sk-estimator-doc-link,\n",
              "a:link.sk-estimator-doc-link,\n",
              "a:visited.sk-estimator-doc-link {\n",
              "  float: right;\n",
              "  font-size: smaller;\n",
              "  line-height: 1em;\n",
              "  font-family: monospace;\n",
              "  background-color: var(--sklearn-color-background);\n",
              "  border-radius: 1em;\n",
              "  height: 1em;\n",
              "  width: 1em;\n",
              "  text-decoration: none !important;\n",
              "  margin-left: 0.5em;\n",
              "  text-align: center;\n",
              "  /* unfitted */\n",
              "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
              "  color: var(--sklearn-color-unfitted-level-1);\n",
              "}\n",
              "\n",
              ".sk-estimator-doc-link.fitted,\n",
              "a:link.sk-estimator-doc-link.fitted,\n",
              "a:visited.sk-estimator-doc-link.fitted {\n",
              "  /* fitted */\n",
              "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
              "  color: var(--sklearn-color-fitted-level-1);\n",
              "}\n",
              "\n",
              "/* On hover */\n",
              "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
              ".sk-estimator-doc-link:hover,\n",
              "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
              ".sk-estimator-doc-link:hover {\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-3);\n",
              "  color: var(--sklearn-color-background);\n",
              "  text-decoration: none;\n",
              "}\n",
              "\n",
              "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
              ".sk-estimator-doc-link.fitted:hover,\n",
              "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
              ".sk-estimator-doc-link.fitted:hover {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-3);\n",
              "  color: var(--sklearn-color-background);\n",
              "  text-decoration: none;\n",
              "}\n",
              "\n",
              "/* Span, style for the box shown on hovering the info icon */\n",
              ".sk-estimator-doc-link span {\n",
              "  display: none;\n",
              "  z-index: 9999;\n",
              "  position: relative;\n",
              "  font-weight: normal;\n",
              "  right: .2ex;\n",
              "  padding: .5ex;\n",
              "  margin: .5ex;\n",
              "  width: min-content;\n",
              "  min-width: 20ex;\n",
              "  max-width: 50ex;\n",
              "  color: var(--sklearn-color-text);\n",
              "  box-shadow: 2pt 2pt 4pt #999;\n",
              "  /* unfitted */\n",
              "  background: var(--sklearn-color-unfitted-level-0);\n",
              "  border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
              "}\n",
              "\n",
              ".sk-estimator-doc-link.fitted span {\n",
              "  /* fitted */\n",
              "  background: var(--sklearn-color-fitted-level-0);\n",
              "  border: var(--sklearn-color-fitted-level-3);\n",
              "}\n",
              "\n",
              ".sk-estimator-doc-link:hover span {\n",
              "  display: block;\n",
              "}\n",
              "\n",
              "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
              "\n",
              "#sk-container-id-1 a.estimator_doc_link {\n",
              "  float: right;\n",
              "  font-size: 1rem;\n",
              "  line-height: 1em;\n",
              "  font-family: monospace;\n",
              "  background-color: var(--sklearn-color-background);\n",
              "  border-radius: 1rem;\n",
              "  height: 1rem;\n",
              "  width: 1rem;\n",
              "  text-decoration: none;\n",
              "  /* unfitted */\n",
              "  color: var(--sklearn-color-unfitted-level-1);\n",
              "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
              "  /* fitted */\n",
              "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
              "  color: var(--sklearn-color-fitted-level-1);\n",
              "}\n",
              "\n",
              "/* On hover */\n",
              "#sk-container-id-1 a.estimator_doc_link:hover {\n",
              "  /* unfitted */\n",
              "  background-color: var(--sklearn-color-unfitted-level-3);\n",
              "  color: var(--sklearn-color-background);\n",
              "  text-decoration: none;\n",
              "}\n",
              "\n",
              "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
              "  /* fitted */\n",
              "  background-color: var(--sklearn-color-fitted-level-3);\n",
              "}\n",
              "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
              "              colsample_bylevel=None, colsample_bynode=None,\n",
              "              colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
              "              enable_categorical=False, eval_metric=None, feature_types=None,\n",
              "              gamma=None, grow_policy=None, importance_type=None,\n",
              "              interaction_constraints=None, learning_rate=None, max_bin=None,\n",
              "              max_cat_threshold=None, max_cat_to_onehot=None,\n",
              "              max_delta_step=None, max_depth=None, max_leaves=None,\n",
              "              min_child_weight=None, missing=nan, monotone_constraints=None,\n",
              "              multi_strategy=None, n_estimators=None, n_jobs=None,\n",
              "              num_parallel_tree=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>XGBClassifier</div></div><div><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n",
              "              colsample_bylevel=None, colsample_bynode=None,\n",
              "              colsample_bytree=None, device=None, early_stopping_rounds=None,\n",
              "              enable_categorical=False, eval_metric=None, feature_types=None,\n",
              "              gamma=None, grow_policy=None, importance_type=None,\n",
              "              interaction_constraints=None, learning_rate=None, max_bin=None,\n",
              "              max_cat_threshold=None, max_cat_to_onehot=None,\n",
              "              max_delta_step=None, max_depth=None, max_leaves=None,\n",
              "              min_child_weight=None, missing=nan, monotone_constraints=None,\n",
              "              multi_strategy=None, n_estimators=None, n_jobs=None,\n",
              "              num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div>"
            ]
          },
          "metadata": {},
          "execution_count": 4
        }
      ]
    },
    {
      "source": [
        "# Forming Confusion Matrix\n",
        "y_pred = classifier.predict(X_test)\n",
        "cm = confusion_matrix(y_test, y_pred)\n",
        "print(cm)\n",
        "accuracy_score(y_test, y_pred)\n",
        "\n",
        "# K-Fold Cross Validation\n",
        "accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=10)\n",
        "print(\"Accuracy: {:.2f} %\".format(accuracies.mean() * 100))"
      ],
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "LoXwTRLPVwby",
        "outputId": "54849688-c935-4532-8d8e-0e29beb8c857"
      },
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "[[85  2]\n",
            " [ 1 49]]\n",
            "Accuracy: 96.71 %\n"
          ]
        }
      ]
    }
  ]
}