{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyPEBJ6UnJGiLAl/F4VbQEn/", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "<a href=\"https://colab.research.google.com/github/Orrm23/DeepSeek-Coder/blob/main/breastcancer_6.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "4BYhNI_DVlrd" }, "outputs": [], "source": [] }, { "source": [ "from IPython import get_ipython\n", "from IPython.display import display\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.model_selection import train_test_split\n", "from google.colab import files\n", "from sklearn.preprocessing import LabelEncoder\n", "from xgboost import XGBClassifier\n", "from sklearn.metrics import confusion_matrix, accuracy_score\n", "from sklearn.model_selection import cross_val_score" ], "cell_type": "code", "metadata": { "id": "x58skzkAVrK9" }, "execution_count": 1, "outputs": [] }, { "source": [ "# Load Dataset from Local Directory\n", "uploaded = files.upload()\n", "\n", "# Importing the dataset\n", "dataset = pd.read_csv('dataset.csv')\n", "print(dataset.shape)\n", "print(dataset.head(5))" ], "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 460 }, "id": "Wv58GcVQVsAP", "outputId": "1c7e07ef-7408-4d02-fcc4-54546265d3e3" }, "execution_count": 2, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "<IPython.core.display.HTML object>" ], "text/html": [ "\n", " <input type=\"file\" id=\"files-ef8610b6-acb8-41d0-a661-c5cae3267288\" name=\"files[]\" multiple disabled\n", " style=\"border:none\" />\n", " <output id=\"result-ef8610b6-acb8-41d0-a661-c5cae3267288\">\n", " Upload widget is only available when the cell has been executed in the\n", " current browser session. Please rerun this cell to enable.\n", " </output>\n", " <script>// Copyright 2017 Google LLC\n", "//\n", "// Licensed under the Apache License, Version 2.0 (the \"License\");\n", "// you may not use this file except in compliance with the License.\n", "// You may obtain a copy of the License at\n", "//\n", "// http://www.apache.org/licenses/LICENSE-2.0\n", "//\n", "// Unless required by applicable law or agreed to in writing, software\n", "// distributed under the License is distributed on an \"AS IS\" BASIS,\n", "// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "// See the License for the specific language governing permissions and\n", "// limitations under the License.\n", "\n", "/**\n", " * @fileoverview Helpers for google.colab Python module.\n", " */\n", "(function(scope) {\n", "function span(text, styleAttributes = {}) {\n", " const element = document.createElement('span');\n", " element.textContent = text;\n", " for (const key of Object.keys(styleAttributes)) {\n", " element.style[key] = styleAttributes[key];\n", " }\n", " return element;\n", "}\n", "\n", "// Max number of bytes which will be uploaded at a time.\n", "const MAX_PAYLOAD_SIZE = 100 * 1024;\n", "\n", "function _uploadFiles(inputId, outputId) {\n", " const steps = uploadFilesStep(inputId, outputId);\n", " const outputElement = document.getElementById(outputId);\n", " // Cache steps on the outputElement to make it available for the next call\n", " // to uploadFilesContinue from Python.\n", " outputElement.steps = steps;\n", "\n", " return _uploadFilesContinue(outputId);\n", "}\n", "\n", "// This is roughly an async generator (not supported in the browser yet),\n", "// where there are multiple asynchronous steps and the Python side is going\n", "// to poll for completion of each step.\n", "// This uses a Promise to block the python side on completion of each step,\n", "// then passes the result of the previous step as the input to the next step.\n", "function _uploadFilesContinue(outputId) {\n", " const outputElement = document.getElementById(outputId);\n", " const steps = outputElement.steps;\n", "\n", " const next = steps.next(outputElement.lastPromiseValue);\n", " return Promise.resolve(next.value.promise).then((value) => {\n", " // Cache the last promise value to make it available to the next\n", " // step of the generator.\n", " outputElement.lastPromiseValue = value;\n", " return next.value.response;\n", " });\n", "}\n", "\n", "/**\n", " * Generator function which is called between each async step of the upload\n", " * process.\n", " * @param {string} inputId Element ID of the input file picker element.\n", " * @param {string} outputId Element ID of the output display.\n", " * @return {!Iterable<!Object>} Iterable of next steps.\n", " */\n", "function* uploadFilesStep(inputId, outputId) {\n", " const inputElement = document.getElementById(inputId);\n", " inputElement.disabled = false;\n", "\n", " const outputElement = document.getElementById(outputId);\n", " outputElement.innerHTML = '';\n", "\n", " const pickedPromise = new Promise((resolve) => {\n", " inputElement.addEventListener('change', (e) => {\n", " resolve(e.target.files);\n", " });\n", " });\n", "\n", " const cancel = document.createElement('button');\n", " inputElement.parentElement.appendChild(cancel);\n", " cancel.textContent = 'Cancel upload';\n", " const cancelPromise = new Promise((resolve) => {\n", " cancel.onclick = () => {\n", " resolve(null);\n", " };\n", " });\n", "\n", " // Wait for the user to pick the files.\n", " const files = yield {\n", " promise: Promise.race([pickedPromise, cancelPromise]),\n", " response: {\n", " action: 'starting',\n", " }\n", " };\n", "\n", " cancel.remove();\n", "\n", " // Disable the input element since further picks are not allowed.\n", " inputElement.disabled = true;\n", "\n", " if (!files) {\n", " return {\n", " response: {\n", " action: 'complete',\n", " }\n", " };\n", " }\n", "\n", " for (const file of files) {\n", " const li = document.createElement('li');\n", " li.append(span(file.name, {fontWeight: 'bold'}));\n", " li.append(span(\n", " `(${file.type || 'n/a'}) - ${file.size} bytes, ` +\n", " `last modified: ${\n", " file.lastModifiedDate ? file.lastModifiedDate.toLocaleDateString() :\n", " 'n/a'} - `));\n", " const percent = span('0% done');\n", " li.appendChild(percent);\n", "\n", " outputElement.appendChild(li);\n", "\n", " const fileDataPromise = new Promise((resolve) => {\n", " const reader = new FileReader();\n", " reader.onload = (e) => {\n", " resolve(e.target.result);\n", " };\n", " reader.readAsArrayBuffer(file);\n", " });\n", " // Wait for the data to be ready.\n", " let fileData = yield {\n", " promise: fileDataPromise,\n", " response: {\n", " action: 'continue',\n", " }\n", " };\n", "\n", " // Use a chunked sending to avoid message size limits. See b/62115660.\n", " let position = 0;\n", " do {\n", " const length = Math.min(fileData.byteLength - position, MAX_PAYLOAD_SIZE);\n", " const chunk = new Uint8Array(fileData, position, length);\n", " position += length;\n", "\n", " const base64 = btoa(String.fromCharCode.apply(null, chunk));\n", " yield {\n", " response: {\n", " action: 'append',\n", " file: file.name,\n", " data: base64,\n", " },\n", " };\n", "\n", " let percentDone = fileData.byteLength === 0 ?\n", " 100 :\n", " Math.round((position / fileData.byteLength) * 100);\n", " percent.textContent = `${percentDone}% done`;\n", "\n", " } while (position < fileData.byteLength);\n", " }\n", "\n", " // All done.\n", " yield {\n", " response: {\n", " action: 'complete',\n", " }\n", " };\n", "}\n", "\n", "scope.google = scope.google || {};\n", "scope.google.colab = scope.google.colab || {};\n", "scope.google.colab._files = {\n", " _uploadFiles,\n", " _uploadFilesContinue,\n", "};\n", "})(self);\n", "</script> " ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Saving dataset.csv to dataset.csv\n", "(683, 11)\n", " Sample code number Clump Thickness Uniformity of Cell Size \\\n", "0 1000025 5 1 \n", "1 1002945 5 4 \n", "2 1015425 3 1 \n", "3 1016277 6 8 \n", "4 1017023 4 1 \n", "\n", " Uniformity of Cell Shape Marginal Adhesion Single Epithelial Cell Size \\\n", "0 1 1 2 \n", "1 4 5 7 \n", "2 1 1 2 \n", "3 8 1 3 \n", "4 1 3 2 \n", "\n", " Bare Nuclei Bland Chromatin Normal Nucleoli Mitoses Class \n", "0 1 3 1 1 2 \n", "1 10 3 2 1 2 \n", "2 2 3 1 1 2 \n", "3 4 3 7 1 2 \n", "4 1 3 1 1 2 \n" ] } ] }, { "source": [ "# Segregating Dataset\n", "X = dataset.iloc[:, :-1].values\n", "y = dataset.iloc[:, -1].values\n", "\n", "# Encode the target variable 'y'\n", "le = LabelEncoder()\n", "y = le.fit_transform(y)\n", "\n", "# Splitting Dataset into Train & Test\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)" ], "cell_type": "code", "metadata": { "id": "RcSmj6qPVs6C" }, "execution_count": 3, "outputs": [] }, { "source": [ "# Training with XGBoost\n", "classifier = XGBClassifier()\n", "classifier.fit(X_train, y_train)" ], "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 254 }, "id": "kikaoHatVvp7", "outputId": "37c5e300-7dd3-459b-9d2f-11f86aececa5" }, "execution_count": 4, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=None, n_jobs=None,\n", " num_parallel_tree=None, random_state=None, ...)" ], "text/html": [ "<style>#sk-container-id-1 {\n", " /* Definition of color scheme common for light and dark mode */\n", " --sklearn-color-text: #000;\n", " --sklearn-color-text-muted: #666;\n", " --sklearn-color-line: gray;\n", " /* Definition of color scheme for unfitted estimators */\n", " --sklearn-color-unfitted-level-0: #fff5e6;\n", " --sklearn-color-unfitted-level-1: #f6e4d2;\n", " --sklearn-color-unfitted-level-2: #ffe0b3;\n", " --sklearn-color-unfitted-level-3: chocolate;\n", " /* Definition of color scheme for fitted estimators */\n", " --sklearn-color-fitted-level-0: #f0f8ff;\n", " --sklearn-color-fitted-level-1: #d4ebff;\n", " --sklearn-color-fitted-level-2: #b3dbfd;\n", " --sklearn-color-fitted-level-3: cornflowerblue;\n", "\n", " /* Specific color for light theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n", " --sklearn-color-icon: #696969;\n", "\n", " @media (prefers-color-scheme: dark) {\n", " /* Redefinition of color scheme for dark theme */\n", " --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n", " --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n", " --sklearn-color-icon: #878787;\n", " }\n", "}\n", "\n", "#sk-container-id-1 {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "#sk-container-id-1 pre {\n", " padding: 0;\n", "}\n", "\n", "#sk-container-id-1 input.sk-hidden--visually {\n", " border: 0;\n", " clip: rect(1px 1px 1px 1px);\n", " clip: rect(1px, 1px, 1px, 1px);\n", " height: 1px;\n", " margin: -1px;\n", " overflow: hidden;\n", " padding: 0;\n", " position: absolute;\n", " width: 1px;\n", "}\n", "\n", "#sk-container-id-1 div.sk-dashed-wrapped {\n", " border: 1px dashed var(--sklearn-color-line);\n", " margin: 0 0.4em 0.5em 0.4em;\n", " box-sizing: border-box;\n", " padding-bottom: 0.4em;\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "#sk-container-id-1 div.sk-container {\n", " /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n", " but bootstrap.min.css set `[hidden] { display: none !important; }`\n", " so we also need the `!important` here to be able to override the\n", " default hidden behavior on the sphinx rendered scikit-learn.org.\n", " See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n", " display: inline-block !important;\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-text-repr-fallback {\n", " display: none;\n", "}\n", "\n", "div.sk-parallel-item,\n", "div.sk-serial,\n", "div.sk-item {\n", " /* draw centered vertical line to link estimators */\n", " background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n", " background-size: 2px 100%;\n", " background-repeat: no-repeat;\n", " background-position: center center;\n", "}\n", "\n", "/* Parallel-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-parallel-item::after {\n", " content: \"\";\n", " width: 100%;\n", " border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n", " flex-grow: 1;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel {\n", " display: flex;\n", " align-items: stretch;\n", " justify-content: center;\n", " background-color: var(--sklearn-color-background);\n", " position: relative;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n", " align-self: flex-end;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n", " align-self: flex-start;\n", " width: 50%;\n", "}\n", "\n", "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n", " width: 0;\n", "}\n", "\n", "/* Serial-specific style estimator block */\n", "\n", "#sk-container-id-1 div.sk-serial {\n", " display: flex;\n", " flex-direction: column;\n", " align-items: center;\n", " background-color: var(--sklearn-color-background);\n", " padding-right: 1em;\n", " padding-left: 1em;\n", "}\n", "\n", "\n", "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n", "clickable and can be expanded/collapsed.\n", "- Pipeline and ColumnTransformer use this feature and define the default style\n", "- Estimators will overwrite some part of the style using the `sk-estimator` class\n", "*/\n", "\n", "/* Pipeline and ColumnTransformer style (default) */\n", "\n", "#sk-container-id-1 div.sk-toggleable {\n", " /* Default theme specific background. It is overwritten whether we have a\n", " specific estimator or a Pipeline/ColumnTransformer */\n", " background-color: var(--sklearn-color-background);\n", "}\n", "\n", "/* Toggleable label */\n", "#sk-container-id-1 label.sk-toggleable__label {\n", " cursor: pointer;\n", " display: flex;\n", " width: 100%;\n", " margin-bottom: 0;\n", " padding: 0.5em;\n", " box-sizing: border-box;\n", " text-align: center;\n", " align-items: start;\n", " justify-content: space-between;\n", " gap: 0.5em;\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label .caption {\n", " font-size: 0.6rem;\n", " font-weight: lighter;\n", " color: var(--sklearn-color-text-muted);\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n", " /* Arrow on the left of the label */\n", " content: \"▸\";\n", " float: left;\n", " margin-right: 0.25em;\n", " color: var(--sklearn-color-icon);\n", "}\n", "\n", "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n", " color: var(--sklearn-color-text);\n", "}\n", "\n", "/* Toggleable content - dropdown */\n", "\n", "#sk-container-id-1 div.sk-toggleable__content {\n", " max-height: 0;\n", " max-width: 0;\n", " overflow: hidden;\n", " text-align: left;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content pre {\n", " margin: 0.2em;\n", " border-radius: 0.25em;\n", " color: var(--sklearn-color-text);\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n", " /* Expand drop-down */\n", " max-height: 200px;\n", " max-width: 100%;\n", " overflow: auto;\n", "}\n", "\n", "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n", " content: \"▾\";\n", "}\n", "\n", "/* Pipeline/ColumnTransformer-specific style */\n", "\n", "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator-specific style */\n", "\n", "/* Colorize estimator box */\n", "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n", "#sk-container-id-1 div.sk-label label {\n", " /* The background is the default theme color */\n", " color: var(--sklearn-color-text-on-default-background);\n", "}\n", "\n", "/* On hover, darken the color of the background */\n", "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "/* Label box, darken color on hover, fitted */\n", "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n", " color: var(--sklearn-color-text);\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Estimator label */\n", "\n", "#sk-container-id-1 div.sk-label label {\n", " font-family: monospace;\n", " font-weight: bold;\n", " display: inline-block;\n", " line-height: 1.2em;\n", "}\n", "\n", "#sk-container-id-1 div.sk-label-container {\n", " text-align: center;\n", "}\n", "\n", "/* Estimator-specific */\n", "#sk-container-id-1 div.sk-estimator {\n", " font-family: monospace;\n", " border: 1px dotted var(--sklearn-color-border-box);\n", " border-radius: 0.25em;\n", " box-sizing: border-box;\n", " margin-bottom: 0.5em;\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-0);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-0);\n", "}\n", "\n", "/* on hover */\n", "#sk-container-id-1 div.sk-estimator:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-2);\n", "}\n", "\n", "#sk-container-id-1 div.sk-estimator.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-2);\n", "}\n", "\n", "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n", "\n", "/* Common style for \"i\" and \"?\" */\n", "\n", ".sk-estimator-doc-link,\n", "a:link.sk-estimator-doc-link,\n", "a:visited.sk-estimator-doc-link {\n", " float: right;\n", " font-size: smaller;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1em;\n", " height: 1em;\n", " width: 1em;\n", " text-decoration: none !important;\n", " margin-left: 0.5em;\n", " text-align: center;\n", " /* unfitted */\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-unfitted-level-1);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted,\n", "a:link.sk-estimator-doc-link.fitted,\n", "a:visited.sk-estimator-doc-link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n", ".sk-estimator-doc-link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover,\n", "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n", ".sk-estimator-doc-link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "/* Span, style for the box shown on hovering the info icon */\n", ".sk-estimator-doc-link span {\n", " display: none;\n", " z-index: 9999;\n", " position: relative;\n", " font-weight: normal;\n", " right: .2ex;\n", " padding: .5ex;\n", " margin: .5ex;\n", " width: min-content;\n", " min-width: 20ex;\n", " max-width: 50ex;\n", " color: var(--sklearn-color-text);\n", " box-shadow: 2pt 2pt 4pt #999;\n", " /* unfitted */\n", " background: var(--sklearn-color-unfitted-level-0);\n", " border: .5pt solid var(--sklearn-color-unfitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link.fitted span {\n", " /* fitted */\n", " background: var(--sklearn-color-fitted-level-0);\n", " border: var(--sklearn-color-fitted-level-3);\n", "}\n", "\n", ".sk-estimator-doc-link:hover span {\n", " display: block;\n", "}\n", "\n", "/* \"?\"-specific style due to the `<a>` HTML tag */\n", "\n", "#sk-container-id-1 a.estimator_doc_link {\n", " float: right;\n", " font-size: 1rem;\n", " line-height: 1em;\n", " font-family: monospace;\n", " background-color: var(--sklearn-color-background);\n", " border-radius: 1rem;\n", " height: 1rem;\n", " width: 1rem;\n", " text-decoration: none;\n", " /* unfitted */\n", " color: var(--sklearn-color-unfitted-level-1);\n", " border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted {\n", " /* fitted */\n", " border: var(--sklearn-color-fitted-level-1) 1pt solid;\n", " color: var(--sklearn-color-fitted-level-1);\n", "}\n", "\n", "/* On hover */\n", "#sk-container-id-1 a.estimator_doc_link:hover {\n", " /* unfitted */\n", " background-color: var(--sklearn-color-unfitted-level-3);\n", " color: var(--sklearn-color-background);\n", " text-decoration: none;\n", "}\n", "\n", "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n", " /* fitted */\n", " background-color: var(--sklearn-color-fitted-level-3);\n", "}\n", "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=None, n_jobs=None,\n", " num_parallel_tree=None, random_state=None, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>XGBClassifier</div></div><div><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=None, n_jobs=None,\n", " num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div>" ] }, "metadata": {}, "execution_count": 4 } ] }, { "source": [ "# Forming Confusion Matrix\n", "y_pred = classifier.predict(X_test)\n", "cm = confusion_matrix(y_test, y_pred)\n", "print(cm)\n", "accuracy_score(y_test, y_pred)\n", "\n", "# K-Fold Cross Validation\n", "accuracies = cross_val_score(estimator=classifier, X=X_train, y=y_train, cv=10)\n", "print(\"Accuracy: {:.2f} %\".format(accuracies.mean() * 100))" ], "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "LoXwTRLPVwby", "outputId": "54849688-c935-4532-8d8e-0e29beb8c857" }, "execution_count": 5, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[85 2]\n", " [ 1 49]]\n", "Accuracy: 96.71 %\n" ] } ] } ] }