from vllm import LLM, SamplingParams import json from transformers import AutoTokenizer from pathlib import Path version = "20240121-Jul" def generate_batch(examples, tokenizer, llm, model: str): stop = None if model == 'deepseekcoder-instruct': prompts = [ tokenizer.apply_chat_template([{'role': 'user', 'content': ex['prompt_sft'] }], tokenize=False, add_generation_prompt=True) for ex in examples ] else: raise NotImplementedError() # Create a sampling params object. sampling_params = SamplingParams( temperature=0.0, # top_p=0.95, max_tokens=1024, stop=stop ) print("Sample prompt: {}".format(prompts[0])) outputs = llm.generate(prompts, sampling_params) for i in range(len(examples)): examples[i]['output'] = outputs[i].outputs[0].text return examples def generate_main(data_path: str, model_name_or_path: str, saved_path: str, model_type: str='deepseekcoder-instruct', cot: bool=False): examples = [json.loads(x) for x in open(data_path).readlines()] def _convert_for_sft(ex): ex['prompt_sft'] = ex["prompt_sft"] + "\nYou need first write a step-by-step outline and then write the code." return ex if cot: examples = [_convert_for_sft(x) for x in examples] saved_path = saved_path.replace(".jsonl", ".cot.jsonl") print(model_type) print("Model `{}`, COT = {}:{}".format(model_type, cot, model_name_or_path)) print("Saved path: {}".format(saved_path)) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) # Create an LLM. llm = LLM( model=model_name_or_path, pipeline_parallel_size=1, tensor_parallel_size=8, max_num_seqs=512, max_num_batched_tokens=8192, max_model_len=4096, gpu_memory_utilization=0.85, trust_remote_code=True ) generated_examples = generate_batch(examples, tokenizer, llm, model_type) print("Generate all over!!!") with open(saved_path, 'w', encoding='utf-8') as fw: for ex in generated_examples: fw.write(json.dumps(ex) + '\n') print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path)) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--data_path', type=str, default=Path(__file__).parent.joinpath(f"data/{version}.jsonl").as_posix()) parser.add_argument('--model_name_or_path', type=str, default='deepseek-ai/deepseek-coder-7b-instruct') parser.add_argument('--saved_path', type=str, default=f'output/{version}.deepseek-coder-7b-instruct.jsonl') parser.add_argument('--cot', action='store_true', default=False) args = parser.parse_args() generate_main( data_path=args.data_path, model_name_or_path=args.model_name_or_path, saved_path=args.saved_path, cot=args.cot, )