update eval_instruct.py

This commit is contained in:
Yang Dejian 2023-11-09 22:48:51 +08:00
parent 4f0b860d30
commit f911009816

View File

@ -7,22 +7,20 @@ from tqdm import tqdm
data_abs_dir = Path(__file__).parent / "data" data_abs_dir = Path(__file__).parent / "data"
from utils.utils import extract_generation_code from utils.utils import extract_generation_code, languge_settings
from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import AutoTokenizer, AutoModelForCausalLM
from human_eval.evaluation import evaluate_functional_correctness from human_eval.evaluation import evaluate_functional_correctness
def build_deepseekcoder_instruction(languge: str, question: str): def build_deepseekcoder_instruction(languge: str, question: str):
return ''' return '''
Please help me to complete the function. Use the given packages only and DO NOT refer any new package. Please return all completed function in a codeblock. Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion:
Here is the given code to do completion:
```{} ```{}
{} {}
``` ```
'''.strip().format(languge.lower(), question) '''.strip().format(languge.lower(), question.strip())
def generate_one(example, lang, tokenizer, model): def generate_one(example, lang, tokenizer, model):
prompt = build_deepseekcoder_instruction(lang, example['prompt']) prompt = build_deepseekcoder_instruction(languge_settings[lang]['full_name'], example['prompt'])
inputs = tokenizer.apply_chat_template( inputs = tokenizer.apply_chat_template(
[{'role': 'user', 'content': prompt }], [{'role': 'user', 'content': prompt }],
return_tensors="pt" return_tensors="pt"
@ -33,11 +31,14 @@ def generate_one(example, lang, tokenizer, model):
outputs = model.generate( outputs = model.generate(
inputs, inputs,
max_new_tokens=512, max_new_tokens=1024,
do_sample=False, do_sample=False,
top_p=0.95, # top_p=0.95,
# temperature=temperature,
pad_token_id=stop_id,
eos_token_id=stop_id eos_token_id=stop_id
) )
output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
example['output'] = output example['output'] = output
@ -49,17 +50,18 @@ def generate_main(args):
saved_path = args.output_path saved_path = args.output_path
temp_dir = args.temp_dir temp_dir = args.temp_dir
os.makedirs(temp_dir, exist_ok=True) os.makedirs(temp_dir, exist_ok=True)
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
print("model", model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path))
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
model_name_or_path, model_name_or_path,
torch_dtype=torch.bfloat16, torch_dtype=torch.bfloat16,
device_map="cuda" device_map="auto",
#use_flash_attention_2=True
) )
model.eval() model.eval()
problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl")
examples = [json.loads(x) for x in open(problem_file) if x.strip()] examples = [json.loads(x) for x in open(problem_file) if x.strip()]
print("Read {} examples for evaluation over.".format(len(examples))) print("Read {} examples for evaluation over.".format(len(examples)))