From 8a99c2154ad3dbb560de94edf1fef5d6741247a8 Mon Sep 17 00:00:00 2001 From: Yang Dejian Date: Fri, 3 Nov 2023 20:28:57 +0800 Subject: [PATCH 1/5] add requirements.txt --- requirements.txt | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 requirements.txt diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..ae7cdf8 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,4 @@ +torch>=2.0 +tokenizers>=0.14.0 +transformers>=4..35.0 +accelerate \ No newline at end of file From 118e71a1af613b00bba0ac5aa9c31f733ae58aed Mon Sep 17 00:00:00 2001 From: Yang Dejian Date: Sat, 4 Nov 2023 17:39:04 +0800 Subject: [PATCH 2/5] add instruction model eval script --- Evaluation/HumanEval/eval_instruct.py | 126 ++++++++++++++++++++++++++ Evaluation/HumanEval/utils/utils.py | 106 ++++++++++++++++++++++ 2 files changed, 232 insertions(+) create mode 100644 Evaluation/HumanEval/eval_instruct.py diff --git a/Evaluation/HumanEval/eval_instruct.py b/Evaluation/HumanEval/eval_instruct.py new file mode 100644 index 0000000..f09a37d --- /dev/null +++ b/Evaluation/HumanEval/eval_instruct.py @@ -0,0 +1,126 @@ +import argparse +import json +import os +import torch +from pathlib import Path +from tqdm import tqdm + +data_abs_dir = Path(__file__).parent / "data" + +from utils.utils import extract_generation_code +from transformers import AutoTokenizer, AutoModelForCausalLM +from human_eval.evaluation import evaluate_functional_correctness + +def build_deepseekcoder_instruction(languge: str, question: str): + return ''' +Please help me to complete the function. Use the given packages only and DO NOT refer any new package. Please return all completed function in a codeblock. +Here is the given code to do completion: +```{} +{} +``` +'''.strip().format(languge.lower(), question) + + +def generate_one(example, lang, tokenizer, model): + prompt = build_deepseekcoder_instruction(lang, example['prompt']) + inputs = tokenizer.apply_chat_template( + [{'role': 'user', 'content': prompt }], + return_tensors="pt" + ).to(model.device) + + stop_id = tokenizer.convert_tokens_to_ids("<|EOT|>") + assert isinstance(stop_id, int), "Invalid tokenizer, EOT id not found" + + outputs = model.generate( + inputs, + max_new_tokens=512, + do_sample=False, + top_p=0.95, + eos_token_id=stop_id + ) + output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) + example['output'] = output + + return extract_generation_code(example, lang_code=lang) + +def generate_main(args): + model_name_or_path = args.model + lang = args.language + saved_path = args.output_path + temp_dir = args.temp_dir + os.makedirs(temp_dir, exist_ok=True) + + tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) + print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) + model = AutoModelForCausalLM.from_pretrained( + model_name_or_path, + torch_dtype=torch.bfloat16, + device_map="cuda" + ) + + model.eval() + problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") + examples = [json.loads(x) for x in open(problem_file) if x.strip()] + print("Read {} examples for evaluation over.".format(len(examples))) + + generated_examples = [] + for ex in tqdm(examples, desc='Generating'): + gen_example = generate_one(ex, lang, tokenizer, model) + generated_examples.append(gen_example) + + print("Generate all over!!!") + with open(saved_path, 'w', encoding='utf-8') as fw: + for ex in generated_examples: + fw.write(json.dumps(ex) + '\n') + print("Save {} processed examples into {} over!".format(len(generated_examples), saved_path)) + + result = evaluate_functional_correctness( + input_file=saved_path, + tmp_dir=temp_dir, + n_workers=8, + timeout=3.0, + problem_file=problem_file, + language=lang + ) + print(lang, result, model_name_or_path) + pass + +def evaluation_only(args): + lang = args.language + temp_dir = args.temp_dir + assert os.path.exists(args.output_path), "Not fond output file: {}".format(args.output_path) + os.makedirs(temp_dir, exist_ok=True) + + output_name = os.path.basename(args.output_path) + output_examples = [json.loads(x) for x in open(args.output_path) if x.strip()] + + processed_examples = [extract_generation_code(ex, lang) for ex in tqdm(output_examples, "Processing")] + processed_path = os.path.join(temp_dir, output_name) + with open(processed_path, 'w', encoding='utf-8') as fw: + for ex in processed_examples: + fw.write(json.dumps(ex) + '\n') + print("Save {} processed examples into {} over!".format(len(processed_examples), processed_path)) + + problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") + from human_eval.evaluation import evaluate_functional_correctness + result = evaluate_functional_correctness( + input_file=processed_path, + tmp_dir=temp_dir, + n_workers=8, + timeout=3.0, + problem_file=problem_file, + language=lang + ) + print(lang, result) + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--model', type=str, help="model name or path") + parser.add_argument('--output_path', type=str, help="output path of your generation") + parser.add_argument('--language', type=str, help="langauge") + parser.add_argument('--temp_dir', type=str, help="temp dir for evaluation", default="tmp") + args = parser.parse_args() + + os.environ["TOKENIZERS_PARALLELISM"] = "false" + generate_main(args) + pass \ No newline at end of file diff --git a/Evaluation/HumanEval/utils/utils.py b/Evaluation/HumanEval/utils/utils.py index 21b9c1b..41fcb3d 100644 --- a/Evaluation/HumanEval/utils/utils.py +++ b/Evaluation/HumanEval/utils/utils.py @@ -1,3 +1,109 @@ +import re + +languge_settings = { + 'python': { + 'full_name': 'Python', + 'indent': 4, + }, + 'cpp': { + 'full_name': 'cpp', + 'indent': 0, + 'main': "int main()", + }, + 'java': { + 'full_name': 'Java', + 'indent': 4, + 'main': "public static void main", + }, + 'cs': { + 'full_name': "csharp", + 'indent': 0, + 'main': "public static void Main", + }, + 'php': { + 'full_name': "PHP", + 'indent': 0, + }, + 'ts': { + 'full_name': "TypeScript", + 'indent': 0, + }, + 'js': { + 'full_name': "JavaScript", + 'indent': 0 + }, + 'sh': { + 'full_name': "Bash", + 'indent': 0 + } +} + +def get_function_name(question: str, lang: str): + func_lines = [x for x in question.strip().split('\n') if x.strip()] + + if lang.lower() == 'python': + func_idx = [i for i in range(len(func_lines)) if func_lines[i].startswith("def ")][-1] + func_name = func_lines[func_idx].split('(')[0].strip() + func_prefix = "\n".join(func_lines[:func_idx]) + return func_name, func_prefix + + func_name = func_lines[-1].split('{')[0].strip() + func_prefix = "\n".join(func_lines[:-1]) + return func_name, func_prefix + +def extract_generation_code(example: str, lang_code: str, verbose: bool=False): + task_id = example['task_id'] + output = example.get('output', example.get("gpt_completion")) + question = example["prompt"].strip() + setting = languge_settings[lang_code] + lang = setting['full_name'] + indent = setting['indent'] + + try: + code_block: str = re.findall(f'```{lang.lower()}\n(.*?)```', output, re.DOTALL | re.IGNORECASE)[0] + if verbose: + print(">>> Task: {}\n{}".format(task_id, code_block)) + + # Remove main + if setting.get('main', None) and setting['main'] in code_block: + main_start = code_block.index(setting['main']) + code_block = code_block[:main_start] + + func_name, func_prefix = get_function_name(question, lang) + + try: + start = code_block.lower().index(func_name.lower()) + indent = 0 + while start - indent >= 0 and code_block[start - indent-1] == ' ': + indent += 1 + + try: + end = code_block.rindex('\n' + ' '*indent + '}') + except: + end = len(code_block) + except: + start = 0 + try: + end = code_block.rindex('\n' + ' '*indent + '}') + except: + end = len(code_block) + + body = code_block[start:end] + + if lang_code.lower() in ['php', 'ts', 'js']: + body += '\n' + ' '*indent + '}' + + generation = func_prefix + '\n' + body + '\n' + example['generation'] = generation + + except Exception as ex: + print("Failed to extract code block with error `{}`:\n>>> Task: {}\n>>> Output:\n{}".format( + ex, task_id, output + )) + example['generation'] = example['prompt'] + '\n' + output + + return example + def cleanup_code( code: str, language_type: str = None, From 4f0b860d301ab3db442d6f354d196f9e2c8e455d Mon Sep 17 00:00:00 2001 From: Yang Dejian Date: Thu, 9 Nov 2023 22:46:45 +0800 Subject: [PATCH 3/5] add deepspeed finetune --- finetune/README.md | 44 ++++++ finetune/configs/ds_config_zero3.json | 51 +++++++ finetune/finetune_deepseekcoder.py | 207 ++++++++++++++++++++++++++ finetune/requirements.txt | 10 ++ 4 files changed, 312 insertions(+) create mode 100644 finetune/README.md create mode 100644 finetune/configs/ds_config_zero3.json create mode 100644 finetune/finetune_deepseekcoder.py create mode 100644 finetune/requirements.txt diff --git a/finetune/README.md b/finetune/README.md new file mode 100644 index 0000000..4e71e06 --- /dev/null +++ b/finetune/README.md @@ -0,0 +1,44 @@ +## How to Fine-tune DeepSeek-Coder + +We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks. + +The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by: + +```bash +pip install -r requirements.txt +``` + +Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data. +Each line is a json-serialized string with two required fields `instruction` and `output`. + +After data preparation, you can use the sample shell script to finetune `deepseek-ai/deepseek-coder-6.7b-instruct`. +Remember to specify `DATA_PATH`, `OUTPUT_PATH`. +And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario. + +```bash +DATA_PATH="" +OUTPUT_PATH="" +MODEL="deepseek-ai/deepseek-coder-6.7b-instruct" + +deepspeed finetune_deepseekcoder.py \ + --model_name_or_path $MODEL_PATH \ + --data_path $DATA_PATH \ + --output_dir $OUTPUT_PATH \ + --num_train_epochs 3 \ + --model_max_length 1024 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 1 \ + --gradient_accumulation_steps 4 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 100 \ + --save_total_limit 100 \ + --learning_rate 2e-5 \ + --warmup_steps 10 \ + --logging_steps 1 \ + --lr_scheduler_type "cosine" \ + --gradient_checkpointing True \ + --report_to "tensorboard" \ + --deepspeed configs/ds_config_zero3.json \ + --bf16 True +``` \ No newline at end of file diff --git a/finetune/configs/ds_config_zero3.json b/finetune/configs/ds_config_zero3.json new file mode 100644 index 0000000..73f3b5f --- /dev/null +++ b/finetune/configs/ds_config_zero3.json @@ -0,0 +1,51 @@ +{ + "bf16": { + "enabled": "auto" + }, + "optimizer": { + "type": "AdamW", + "params": { + "lr": "auto", + "betas": "auto", + "eps": "auto", + "weight_decay": "auto" + } + }, + + "scheduler": { + "type": "WarmupLR", + "params": { + "warmup_min_lr": "auto", + "warmup_max_lr": "auto", + "warmup_num_steps": "auto" + } + }, + + "zero_optimization": { + "stage": 3, + "offload_optimizer": { + "device": "cpu", + "pin_memory": true + }, + "offload_param": { + "device": "cpu", + "pin_memory": true + }, + "overlap_comm": true, + "contiguous_gradients": true, + "sub_group_size": 1e9, + "reduce_bucket_size": "auto", + "stage3_prefetch_bucket_size": "auto", + "stage3_param_persistence_threshold": "auto", + "stage3_max_live_parameters": 1e9, + "stage3_max_reuse_distance": 1e9, + "stage3_gather_16bit_weights_on_model_save": true + }, + + "gradient_accumulation_steps": "auto", + "gradient_clipping": "auto", + "steps_per_print": 20, + "train_batch_size": "auto", + "train_micro_batch_size_per_gpu": "auto", + "wall_clock_breakdown": false +} \ No newline at end of file diff --git a/finetune/finetune_deepseekcoder.py b/finetune/finetune_deepseekcoder.py new file mode 100644 index 0000000..91bd297 --- /dev/null +++ b/finetune/finetune_deepseekcoder.py @@ -0,0 +1,207 @@ +# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import copy +import random +from dataclasses import dataclass, field +from typing import Optional, Dict, Sequence + +import torch +import torch.distributed +import transformers +from transformers import Trainer +from datasets import load_dataset + + +IGNORE_INDEX = -100 +EOT_TOKEN = "<|EOT|>" + +def build_instruction_prompt(instruction: str): + return ''' +You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer. +### Instruction: +{} +### Response: +'''.format(instruction.strip()).lstrip() + +@dataclass +class ModelArguments: + model_name_or_path: Optional[str] = field(default="deepseek-ai/deepseek-coder-6.7b-instruct") + +@dataclass +class DataArguments: + data_path: str = field(default=None, metadata={"help": "Path to the training data."}) + + +@dataclass +class TrainingArguments(transformers.TrainingArguments): + cache_dir: Optional[str] = field(default=None) + optim: str = field(default="adamw_torch") + model_max_length: int = field( + default=512, + metadata={"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."}, + ) + +def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): + """Collects the state dict and dump to disk.""" + state_dict = trainer.model.state_dict() + if trainer.args.should_save: + cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} + del state_dict + trainer._save(output_dir, state_dict=cpu_state_dict) # noqa + + +def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict: + """Tokenize a list of strings.""" + tokenized_list = [ + tokenizer( + text, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ) + for text in strings + ] + + input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] + input_ids_lens = labels_lens = [ + tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list + ] + + return dict( + input_ids=input_ids, + labels=labels, + input_ids_lens=input_ids_lens, + labels_lens=labels_lens, + ) + + +def preprocess( + sources: Sequence[str], + targets: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + """Preprocess the data by tokenizing.""" + examples = [s + t for s, t in zip(sources, targets)] + examples_tokenized, sources_tokenized = [_tokenize_fn(strings, tokenizer) for strings in (examples, sources)] + input_ids = examples_tokenized["input_ids"] + + labels = copy.deepcopy(input_ids) + for label, source_len in zip(labels, sources_tokenized["input_ids_lens"]): + label[:source_len] = IGNORE_INDEX + return dict(input_ids=input_ids, labels=labels) + +@dataclass +class DataCollatorForSupervisedDataset(object): + """Collate examples for supervised fine-tuning.""" + tokenizer: transformers.PreTrainedTokenizer + + def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: + input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) + input_ids = [torch.tensor(x) for x in input_ids] + input_ids = torch.nn.utils.rnn.pad_sequence( + input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id + ) + labels = [torch.tensor(x) for x in labels] + labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) + + return dict( + input_ids=input_ids, + labels=labels, + attention_mask=input_ids.ne(self.tokenizer.pad_token_id), + ) + +def train_tokenize_function(examples, tokenizer): + sources = [ + build_instruction_prompt(instruction) + for instruction in examples['instruction'] + ] + targets = [f"{output}\n{EOT_TOKEN}" for output in examples['output']] + data_dict = preprocess(sources, targets, tokenizer) + return data_dict + +def train(): + parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + + if training_args.local_rank == 0: + print('='*100) + print(training_args) + + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + model_max_length=training_args.model_max_length, + padding_side="right", + use_fast=True, + trust_remote_code=True + ) + + print("PAD Token:", tokenizer.pad_token, tokenizer.pad_token_id) + print("BOS Token", tokenizer.bos_token, tokenizer.bos_token_id) + print("EOS Token", tokenizer.eos_token, tokenizer.eos_token_id) + + if training_args.local_rank == 0: + print("Load tokenizer from {} over.".format(model_args.model_name_or_path)) + + model = transformers.AutoModelForCausalLM.from_pretrained( + model_args.model_name_or_path, + torch_dtype=torch.bfloat16 + ) + + if training_args.local_rank == 0: + print("Load model from {} over.".format(model_args.model_name_or_path)) + + + raw_train_datasets = load_dataset( + 'json', + data_files=data_args.data_path, + split="train", + cache_dir=training_args.cache_dir + ) + if training_args.local_rank > 0: + torch.distributed.barrier() + + train_dataset = raw_train_datasets.map( + train_tokenize_function, + batched=True, + batch_size=3000, + num_proc=32, + remove_columns=raw_train_datasets.column_names, + load_from_cache_file=True, # not args.overwrite_cache + desc="Running Encoding", + fn_kwargs={ "tokenizer": tokenizer } + ) + + if training_args.local_rank == 0: + torch.distributed.barrier() + + if training_args.local_rank == 0: + print("Training dataset samples:", len(train_dataset)) + for index in random.sample(range(len(train_dataset)), 3): + print(f"Sample {index} of the training set: {train_dataset[index]['input_ids']}, {train_dataset[index]['labels']}.") + print(f"Sample {index} of the training set: {tokenizer.decode(list(train_dataset[index]['input_ids']))}.") + + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) + data_module = dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) + + trainer = Trainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) + + trainer.train() + trainer.save_state() + safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) + + +if __name__ == "__main__": + train() \ No newline at end of file diff --git a/finetune/requirements.txt b/finetune/requirements.txt new file mode 100644 index 0000000..f6e03b7 --- /dev/null +++ b/finetune/requirements.txt @@ -0,0 +1,10 @@ +torch>=2.0.1 +tokenizers>=0.14.0 +transformers>=4.35.0 +accelerate +attrdict +tqdm + +deepspeed +datasets +tensorboardX From f9110098164b2df31ed5717df4a46b1d7ce548b6 Mon Sep 17 00:00:00 2001 From: Yang Dejian Date: Thu, 9 Nov 2023 22:48:51 +0800 Subject: [PATCH 4/5] update eval_instruct.py --- Evaluation/HumanEval/eval_instruct.py | 28 ++++++++++++++------------- 1 file changed, 15 insertions(+), 13 deletions(-) diff --git a/Evaluation/HumanEval/eval_instruct.py b/Evaluation/HumanEval/eval_instruct.py index f09a37d..71874fe 100644 --- a/Evaluation/HumanEval/eval_instruct.py +++ b/Evaluation/HumanEval/eval_instruct.py @@ -7,22 +7,20 @@ from tqdm import tqdm data_abs_dir = Path(__file__).parent / "data" -from utils.utils import extract_generation_code +from utils.utils import extract_generation_code, languge_settings from transformers import AutoTokenizer, AutoModelForCausalLM from human_eval.evaluation import evaluate_functional_correctness def build_deepseekcoder_instruction(languge: str, question: str): return ''' -Please help me to complete the function. Use the given packages only and DO NOT refer any new package. Please return all completed function in a codeblock. -Here is the given code to do completion: +Please continue to complete the function. You are not allowed to modify the given code and do the completion only. Please return all completed function in a codeblock. Here is the given code to do completion: ```{} {} ``` -'''.strip().format(languge.lower(), question) - +'''.strip().format(languge.lower(), question.strip()) def generate_one(example, lang, tokenizer, model): - prompt = build_deepseekcoder_instruction(lang, example['prompt']) + prompt = build_deepseekcoder_instruction(languge_settings[lang]['full_name'], example['prompt']) inputs = tokenizer.apply_chat_template( [{'role': 'user', 'content': prompt }], return_tensors="pt" @@ -33,11 +31,14 @@ def generate_one(example, lang, tokenizer, model): outputs = model.generate( inputs, - max_new_tokens=512, - do_sample=False, - top_p=0.95, + max_new_tokens=1024, + do_sample=False, + # top_p=0.95, + # temperature=temperature, + pad_token_id=stop_id, eos_token_id=stop_id ) + output = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) example['output'] = output @@ -49,17 +50,18 @@ def generate_main(args): saved_path = args.output_path temp_dir = args.temp_dir os.makedirs(temp_dir, exist_ok=True) + problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") + print("model", model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) print("load tokenizer {} from {} over.".format(tokenizer.__class__, model_name_or_path)) model = AutoModelForCausalLM.from_pretrained( model_name_or_path, torch_dtype=torch.bfloat16, - device_map="cuda" + device_map="auto", + #use_flash_attention_2=True ) - model.eval() - problem_file = os.path.join(data_abs_dir, f"humaneval-{lang}.jsonl") examples = [json.loads(x) for x in open(problem_file) if x.strip()] print("Read {} examples for evaluation over.".format(len(examples))) @@ -67,7 +69,7 @@ def generate_main(args): for ex in tqdm(examples, desc='Generating'): gen_example = generate_one(ex, lang, tokenizer, model) generated_examples.append(gen_example) - + print("Generate all over!!!") with open(saved_path, 'w', encoding='utf-8') as fw: for ex in generated_examples: From 9c2bc4ec5e643d0e1e68c906e176e085c2b9dfa8 Mon Sep 17 00:00:00 2001 From: Yang Dejian Date: Thu, 9 Nov 2023 22:52:37 +0800 Subject: [PATCH 5/5] remove pycache --- .../__pycache__/humaneval.cpython-38.pyc | Bin 0 -> 5378 bytes .../__pycache__/__init__.cpython-37.pyc | Bin 181 -> 0 bytes .../__pycache__/__init__.cpython-38.pyc | Bin 191 -> 0 bytes .../human_eval/__pycache__/data.cpython-37.pyc | Bin 1981 -> 0 bytes .../human_eval/__pycache__/data.cpython-38.pyc | Bin 2021 -> 0 bytes ...aluate_functional_correctness.cpython-38.pyc | Bin 1003 -> 0 bytes .../__pycache__/evaluation.cpython-37.pyc | Bin 7562 -> 0 bytes .../__pycache__/evaluation.cpython-38.pyc | Bin 7842 -> 0 bytes .../__pycache__/execution.cpython-38.pyc | Bin 13015 -> 0 bytes .../utils/__pycache__/instruct.cpython-38.pyc | Bin 0 -> 2865 bytes .../utils/__pycache__/utils.cpython-39.pyc | Bin 0 -> 3485 bytes 11 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 Evaluation/HumanEval/__pycache__/humaneval.cpython-38.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/__init__.cpython-37.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/__init__.cpython-38.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/data.cpython-37.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/data.cpython-38.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/evaluate_functional_correctness.cpython-38.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-37.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-38.pyc delete mode 100644 Evaluation/HumanEval/human_eval/__pycache__/execution.cpython-38.pyc create mode 100644 Evaluation/HumanEval/utils/__pycache__/instruct.cpython-38.pyc create mode 100644 Evaluation/HumanEval/utils/__pycache__/utils.cpython-39.pyc diff --git a/Evaluation/HumanEval/__pycache__/humaneval.cpython-38.pyc b/Evaluation/HumanEval/__pycache__/humaneval.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd9d1643964a8a619cba47eb1a290f889a0a6b5c GIT binary patch literal 5378 zcmZ`-&5t9;b?@pgHk%*A;cz}zyW5s6N0hZQvZBDjMqck)v$BB*lZ|&{ISngqE~{pS zoMtz-x~Z8ZngOCw5M36KuW1G~?!IC0x;ED{hTe!&P0j-=JbjX$h-5Go5{%aOC!=2S5FPh>c`p;Br{0f6 zFPV(dmy14)bp30favv$X3nC2KC+rc!{%r6jU-^`Uws7X|g~3~V^;6@VVTam$?Nb9g z)Zy#MtK7vJHdS>w_VhJBz_+XiiJzZOm)j&sgamJLXGUv$A9F0{)igDcQi_7UIy^&CBgXB<1k@Q70 zNcxzYNOEPSnes-x69Ijhvc~CH+Bh(^awyYLG?pTly+I_6vp*M3tt1}lopW7$4{0X&k=fuf=0&Om7E7-htVK5`F z&vAze`&Npp_oz?P{VQan$tu)W}&kXJt z4rmRvHRN^VRBwFYL1#Vh;Py7p%~>N~pRZpSvu57p3w_k%+}bxjXCM8;Y~=`d4rvvs zjkJc;!Tnz;R!DBs_)Bx!*f&1nvvqijbF{HQV+f<%y z6>V@gcx&6BmST0jiIr@g!zZA&hPEwT>S(FeQtET|?3H|Hexq2sVDne7n>V3p8(MGi z>WTF^lfNw3@OD9*fVXM1;a8{?>D98v*Ira+JISqUa-F3dr1|;_XSS1nwb(glSkYhq z*qq&%y;AHHH?XRkTJmefO?dQ;7v}6{akE&Z7S3n~X1DU!3L4Ado1kuC4ZnWw%!uQD zZe|}8Z7sXCX%x3MAzgH+Ufe4A(7OFM_Uv}inEy`x`n+4*hIfRl-i5~e4YG=&#_ewz zvl{l{SDzX4Z@^pE3cqM#gtZHY8PEO$z2DT5=KK!jklHOwtz*H_2)Z+UTSH2KZ*jpy zkROXcyU_r+b9FJ6f(O%g79K9hj?+oZgCxy^ry@8=6A_#qi)0C0$x*PpqFpQWOJ5l! zlTqn$?%+O2f~J=oWcvDYwBXT$$B*xS^R2gnL6W^tawPnY(0;6IDRcKN#m*EP z{+!7-p-($6`Aw9R|85K@>8GRdz5A$VKw`rM`qq)IO@EhsQlvL=_uV+{_u}jx3YT3q zQY$CIsKBJ?X{P)LTbW0+uU|U5!wkNgodVsV>s2WJ6NBcJ0$uecaA1cw7>0C>Jn{xe{K>{;_g%kz}b< zW}YgSi;o9=QKF-_Sf?nlQ*Ty43aSE=r5zB|fpke1{IHrK0ys@24$C=}12o(EupK@b zjlnyNC)u&8k{x7-SuultoMu9;p7wxjhpCLj$3i~GMN=CQ%&I?$b)>6}L-*(g+Gdq? zG)C~z>-R-W^T6yY6yG4W4J*l|8S!yxgB27gqzOA^3+*@-nU&iaHh+_=DvM@S>BTYK z=H*cdPSwz(1so0#7FF`mSQq>(@5wyUTW$^bSy)>rrCV`T!A6Jc2-bhY-Xkruei?M| z#WkRSEDK$_3$W>L(Z1WX#;|g@SfGW`wMAp``VFbC~aE9|2XSwnbMPadIt6?jf z93BqNt~kn)Ff|HZMR#PWe%envQ`BxnG*RDreTlj65ly9(()525h0+5-7 zbz;iDh5pvnxYv4GS`rTjzKQ_9Jq?y9^g(*0kxCnV`7k0B8(=;6r{4af;0F&5{_yT} zJ%A}_Cjz_NTbS!zNl&0@C+K~Aq%AT+1RCkc{_fP;efx0Q46-202V~vApSvYSy-S_U zU^KNyVnl+!dpPxi?+v~iJk9Rnp&@%Du=VhV4?YO?|LEZ1SAs|7*a2C6aL{$-hmcTq zf5LmJL(UqCQu#c>yZ{op;PNp9B!QT+5V?1~5`bt`azrF1l2W?~*s#z)^e$IX+Nm~H zvQzmKS?(gQ!`azzw{O6zeKx%o zsQy2=*pTG-B-ym2?U(eRTl{Gv$;u`Dr}N}MHmOWOY1gMWB|Xlg2oV~^bCa0L^(cBa z>BWndN)++5A4T$Q>ZoscB}tOoItbQe!KUdeX_=Sh z|MGWS=0EaUlKOPFwX;wz#V^T`S{Y5^e6a9#V3hHX1GhJRE)UQ_Mj*Sf@|~`YMAh*R zMUo+MK{%A@KQF?@1fDh9U4$b#2n=f_Pg5N#={5eg4O8B`g`kf=dyvQ$X}%5CH>>K!yVl7qb9~6oz01O-8?!3`HPe1o10QzdSWNQ8z0^ zzn~~TML#(|uOu-uFSV#xzbd1&Ff$`DUq2g`k0)Bn7R1p0bL?8o3AjbiSi&=m~3PUi1CZpd~vqMw|fSCW{Sms(V;UzJf>n3<87ub+}yrkh+)3ZzpDic?dwb(8Z`Qj7Fm%Mx=+ z6H7Al^YlGRa})DGeEkd%D?Sy(jE~RE%PfhH*DI*J#bJ}1pHiBWY6r6YGY~TX0NU3w AQ~&?~ diff --git a/Evaluation/HumanEval/human_eval/__pycache__/data.cpython-37.pyc b/Evaluation/HumanEval/human_eval/__pycache__/data.cpython-37.pyc deleted file mode 100644 index b6f6ac4eeb529ea8ae4a2052fcd0515fe697ada4..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1981 zcmbW2Pj4GV6u@U@XV=cgNt_T-iV8I#A~_;9LLhO7BHE@QAV^CKO=T&v#-6dgiM_j- zT{nrf=8{}dkhq~9>?0B%g3rKluAC5`fSh=5^3RRn!mi%inb|jQ-oE#n+50myK7s4^ z=YPq+T|)lA&gJDn<1>)tXHb$z+9f?&qdit*6#J~})ExWdHEy47%~kHMH_BO^S5sp; zrZwO8rj;)p$)!8ywSp?NsG3m>rNwR&>Ahq!C-Wz6Z5GC;!m%kB^X2pjug%Hg<)|vk znU{{7m2+S_FWFO4p8pf#BV}gtU!+QlMpqfW9yHUf0jpFDmm(E|h0T6Xgb!bcZe=%# z!fvHKfC&W!1BpuOtpFx@TBUs*HYvJ;3!e_i1CV3^l%$fKkd$QPn687s+RoOMIRgtw zA$f}CuY(G}aA$T%Gq@$WO@3ng9Hvl{OGUC*59BWxG^>1QI1cDM%(3dMRy|OAVr5rW zV;#wAGYV4?gi0sXL8reTbVO8@>cvVk?pHhgb~^}LqN(s(s;KG>6*fCPq4(e|e0ANv z!8BCjqceY1LT;K-FJ3EPq!_kG2JdJkWF3}+^!1X;YBy>^YSt>())06hNx`gFw<#=B zjh}lRww{KrnR&$#4%sCL)w9sXDq*ri(Nh`$yGkF24zkz;Nqz;Dkr8BkOm!=z8PImj zPQM(|l#MW*&X}EkG-QX%8Cxei?+%^RvUNf-2P<<-^>WHbZsv^XGbrT#@;2E9%Dy2_ z$n%L-c;EWYf$y8%^3t8~cKC|7!%1(_gQ89i*8CD&kA+TDQc|MXDcLNQx=^^12xaLg zP+ggng0v)(k|<#nf+!UF$W9zMfTUr%0g_%N1&f0SCMa*%r0f)ts1X^H0cR(&;DSIZbLYW){X~*y=R-xhTK@b~9ghz&BPL11*giOj@&%r!=-HHtZ z;h5{2{%61j?GjvwaGw_FEcNLEU1A0M)M&9$cC0sz7#dH+u&``m>ha2fAe#?BlHWjO zO#6}!osdfg?2%nMVi_6JAyVrAom79H@(gGMvNnf2g;OyDTgiW5r$R{i0# zdtVs`c9}f{Epdi7qNr;Zo>Gs7U_a>hcC|m1GW0o Awg3PC diff --git a/Evaluation/HumanEval/human_eval/__pycache__/data.cpython-38.pyc b/Evaluation/HumanEval/human_eval/__pycache__/data.cpython-38.pyc deleted file mode 100644 index 94ed78ca7a74cf1fc31695022fbcaac3a24c9062..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 2021 zcmbVN&u<$=6rP!#T{~;%M?*y^DrG4k)rHuoQV~K?L}?m|1Szz%MV2Bn_DqsZ?A^`G zI%%x+DLElkIdDTg*f;VY@VCsB6aPX_yf-0n5{V0Iy|=rw@4b2Recz0qO;3jeuGz-t zsuB?L7rvaoV2pePW_|}JiKJc9qfOdlO-AvZb-kwN?!3v}-EaEJ-wH-0=gVqpOvkht zy0?l7r6;-c$Gllp)pe?-6+>HR*NF^XGg*@5L%%r#V^rbT6pV$ka>$#ra_)3g&B^K4 zo}7`h5PLO`+ZMY}_sZQF?s(Gk<_9$Ot$XQ{B#K0UA7D zM=L{`vk}7UjoDFs$O^Vh)@}{G-0AI*6dp2lK=tjMkNmr93L}xoXg^k6 zX`(ofgo#9iOaNg*@4Lh|9*ER3-3H4qfP(0uC=J>>4wSVy)YpiNNtL+8F$n@ZrmM#w zv)GtSbks4^QxI(F%ZbFaV`yq|LnZ2ErkAc^Nd%pP2nO$;XZM@}PNOZ=Z~T6~zVHP| zp{x?nUYuRj#xp)bcky9K($m4a$bN=LCwoUp2Hbh zK&<4i*wLM#U%*MTc5@gM{-~6fM^i;GrqaJgMxlhKF$FCzPt-SgO1?a+dS}Sbs__4; z^6Mm5mO#Vh!96F%7dp;C!y*B#o}92zx<1is4BztfMBOglG6AaHYwI~!J#6q2Zt%3d zWqA)yCrd;9E__(6RV+)5<(U8mL(m^=ioQ`=BhmUjbT`4-@;5;13Leq^9(JN59Q9?t zml+#4*{ND-!ixSFQ)}oxM0X1vD*F=Sw&Kd299|K8cbkcDP6Nh)eN+H4f0tFk>$?z9 zqbs#}8|3>L2wmew)JVPS)3v2P!Pig0*^-Pko@%xv+OPp(jpdg6r)jk;fAaY8Pax7X zPMYDPXW!pnZ9RN`|2yl!j&sMN)0*Y&H0`>H&$aIUAKbnzF9M$Zu3EysDT82RyYTa_ L(s}O&zk1~#nNQSc diff --git a/Evaluation/HumanEval/human_eval/__pycache__/evaluate_functional_correctness.cpython-38.pyc b/Evaluation/HumanEval/human_eval/__pycache__/evaluate_functional_correctness.cpython-38.pyc deleted file mode 100644 index cbcc04e65eda27cbdfc049fe6bd9c8defde5d6e6..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1003 zcmah|&2H2%5VrHbe;`VW#EGclvQoR-az>~XYQ+Keg32KWqIB);rgh?AJ1t#O32FNn zNVG@ZpwHqfr`|d3iE*-m<%Au7o*CQY`DUD>UayUy-Tk^F-z|iG8fCQwpzOhr1b`rd z8H$=2M;LUAS(zQ#*w}35WNzew>=2iD)F%GKr5<#j27oOReDg?)w6EQ$O**7|jiL_4 zH(lD9qgxE;@O#wn-NQ|2)W^F0=IGu2C_ebG{}!}o^gLl@qG&uR^RY^Kp0Ie#g`i`V zQz>V`?$+)Od^`6JI5;t05DNAV`=0K|Br6!4Oc~YqOt?YD&Yul)@ECA)kaNG^YYsld$0+x56YR;e|*Qm9-~9Wyuuy z;o)TS%L>!0c)2tyk(ylC6s)P-^v|9);^?l)j zCQJ^5Auh~w5G@1d*=T=x!4D+XKwo?uUeL2-`;-hJnPfQTxk^%qUk+!}@>4oZ_>j=^ z;k3+>eB0Es5#w6?Pkjf)rS8yNiOaa)5S$4`*462*<25YSK_A2Trx`MJwH|<=&<#|p zerO0Pfk%B?JCjt<$T7>fJxi(QbrGJN;QuG zNmL@t#%N>3x?~5>w#l$9l@KN>?M@g^ly;6eXH5*oy>{qlsD?@F3e@2QFEdU`MqgoA Zl+OVI99Ui4buGN?i$9XFEV_>Z=QkZZ0e=7h diff --git a/Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-37.pyc b/Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-37.pyc deleted file mode 100644 index aa7419335d21b7ec8b1046973dc930a321d12c77..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 7562 zcmbVRO^h2ycJAtKlFgsta5$s+mqh*9qISiRW$)UNWLdH_lI_T|T1mTdI%`lptR9jg z+0ChL$}_#qMdHz7r3JjvCcs`I2QxsBKLk1Eb>thzCSjWQSkio<|#Y-x}y9i6^73^GFR|=f5jAqE1b0zGyXD@ z$+Bvy@~fGe{OYDIzX>xTzezJCzlLextG3hksK3_Ebh2iaQC@H7I%DRT%qQCU&bT?= zDVPP6lRVX)=oHPO%p2{=&XhTYe41x?mgo2w&+~C!;1j&aC;1dV#Haa8eVotoIX=%9 z_#!{dkMN_s#E;c8{5U_sPx4dzHU2t3&CC1@{}yV$&Cl`*U*hNZ8@y6a@$=7h^ALZN zzs0}9zsuj|?>tYK)BLtQgWoK_@Lb~;`K8ARbIzW(7wkoQVNS7A4-c9tI;G5<4 zn$>Ijyjk;vwS426>tJd63w{812e}OYs&@botAna5hdalz( zd7{>^Yc0?TVb^@e_Pik5>~vk>mpYc;2-1Usu!GDX>uv7R)ZFf7Fg|GDmT&vbjvW*R z6;0n3K3MXC;-IGHw%eGe={jDJ8`L#ytGhnxv(|HJai9FK-SQgk=IV&v>2)yaa70-u zSzgKM24jOBSYy+v2UBap?Uek@E()bV)0tpS*6v|s)D-EoeNESP54&>H zcBuQsptz6ZR?}HOSa;9f@Gk}@_R-yiOk=Y)E7#=q)`it=Y+fwuQL?+~H(V!D>u#jg zy4^^vd8T&l_H9$W=|=iT)+5WzP-R7^K| z9m}yFS?#hGr6JT-b*)VRiVo*?bHlk6+p z;OWPTZ-mMgyNS8OG0kseR5u9U3FI5){sQ4c9M$SszDOsZ_)qI11ECCCH9e zcXlIQuTJX<=0^3^cuOl%MO5lRjZ_CcDqdRVUA*2jlBNLBZ=&d&!mb=95 zM`vr@-cqAiuQ#1Ft7g-YEKyQjwVhg{V~G}8aaPq)OV1+RQt58K%v>VXNc!*c9paam zPbxu))MRyVl9fwsw`R4y%avW?AbmYP<_o1@yyVa>_PV4GZC)v-qeK^~#g7tg_cL2W zs_R91S1JwO6pjT2k+N1jSz}bC*i@^KFSqFk5)O#nJng{(64QX{s?s@`IS99~9ltsl zDrR7JyTozON4dSM-$ac^(yJs4mS;I;uqigprqrA&&Y~7qBP++Z$N+e8VW8zB))I@L z8Og4WLJ}{@ve!o9$3Mmy?48QB$NE#nS3}fpsp6auX+=H}vMsiw_BCe_c}Qbi(^9?b ze)4nXr>G8+Y;320ru>YpsU*pd4L=iV=&6$Y?vRB`1|MWfc$T3=p#N;I)P)MV(ki)Y zCEKbsN)VCNw%sW~zvB4l)_Enrfr_Ssx{@V?wONrvVAaftSWTS6BKEJ5)<)P!3hxDE zLM3FgxSK6S6v)zY<}2G+aj4>pwNfirXFx~kj=G@CDm$nH$6D~NoQ}A@X0>a*wq*N_ z(%BLOZuPW7nQxa`<T5L#@=T$Ag+S--#QLoXZrhTE_qz=84Na}Q{ z7k{MoSzmpE6Q@%q9k#`uur2ME@`_8*#68z=7r<%>-FEpctKz#BSe) zMR|B3U;E$K-R)A&inq}#O02bA%a1Zm*e1`noSGe_M=*nwa@R()*0!A}e^nYX=!0b; zfQNLV6K~2zOCAj9lAuksw7uni%E|4H(#Nf&@%u)obEBn-zo1!s#toW*X6>iL zbZF4*ko{Er?Ps2;&Uy4mqsMP}s-N9Bi9YE$<+}3eY(E#~!elEYz6!Hpj{3c=^t0<< z-B-e_9A(dF7>PN*#z>i#`izN8Xbk6(E&qa+tZcb0XE}mdvT~LpX4y0PGq!&Gw~qe= zqvTpijQ{Y!_zqgeFup4M!Jg!?7h_=(H+~E@R;8UqzrWkvTPp4D?l*QbKA&-nlCCTL z{KiM%xF9*c+#e6e!*nZ!5xx$`w>3V29WH{h5El3(cGr+RejVnwbv_l2!-`LRsqHYP zV0B+(b$Re`|sp7*HDMh-Cl?aD#x~fYE`=a`uL_R8?84$ompQv>EgjbYoyVXXQ8q z*Sr|cslFGfUPIzIGf{WXzj;1N#!x@X&`?!ipk7zDzhp}<{u@ukDlggbk!N!{6X>Lr zM;a0LQ6Y6|YAxRfdNOBwS1YHe5w0z0PGZFFCdY6%jT z-a|e}%1I5LJ}$y6q-T!RmHxhnJ_K zq$iIdG6qK16NEIPRMV?=RspY#Hq2Acs@w8R#SJuyWunk)F1N+U$eP)Bw^fI~g;Wq&GbiFBtnO)qZw3%`kLEjI3a4Masp}y18b}mq zVVxb(3|3-!6-Y@lQbjfk#H0f`8LWVO25Cl?sU8hUj?+vZT@{zMw8xsNiY?28rW7+g1r;adiuT3yMf} zGP101A-_=x0hm604RA^$cL1tDBUP})#CbRrx}VrihEN@(Jl4-cb*S5^9fiSs-~y&r z0u4AmQpGA>KVo8^tP=w8=%w2Q+g~6_-&S^%obp2qu?{~5gD?s~KnwtGYc@=L3B(cG zIB*y*)0gO$Z*;}wf1n}byA+&=-OM=ZP_^3aJrX~pFB_2o8T3AbPaNrWnC3`#A(fG4 zIh*45XgZx-62jgV_o76t?RqxMca54L(H_Df&<1Ph*Ct=$fS42x^6>Y>poGvk-VC5~ zMjoX!+CJLgE-k$%Av1t$C$9v@DwQSj9b&gbx*`Xhr5A)TUvMPlEKrKm?fJ3ynDRT_ zDx8EU?NmQ=MGL+T+$4k)+#a;w;I<7&QAMN@jzk4{o9e>tIouaLzaej=_z|WMpCYMc zkpmu>vyB`5Jsw{R{R?{iApKV`RO2eM{+& z^F+Vk!xII~L`c@Fh*3~t%Enhf_1SG>2mK+Ae+#=&8!NyGS?2gtygkHHh1?ku&#m~duWJ4p&Z0V@UU!rivOgV;JskH7Yb>1pGxZlre+CwGBAg-NCz=FYQ9k}QHUeW6DAzBn zKe(?rzs5QWavlGHb>!q4{&mk9($AQ8Aq2l62z_TlmoBf{F*B9iMsyQ zedRvR==;hYK_`G zo~i3U0pHWxGf&X^l*t?r=~E?~1H$;PFxg)mc#(()KQ_WeIp$$_CWmP?P6_K;K(9m8 ze@lhLD|}IwF$$H#!_Z=fSAy~77-^KGd_5XmhN8v>@musnH09onVERtaafp&eKx6_g4N-&dgzx%rMTgdAABZ8&B#4o! zogy{lZVZ5oDxFXOF^c-GRtaxa&)G7;6d=GFkv9T7zAY z-WKAxw&e^LLBql-rv^NUKSViR)N#t4KyqZX9v1u`)-wt)1<8A~`4vg1)E3Tlrd_-&z$tEQMB|oMlq@+&??T+{fC4}>Kt%~@4 z6wO>Lkg?r{c^>|?kXq{@3627)UHbP1CZ3HfzGi>5I!eTalv0yr-j_crtU zq`PVsN1`-}T!^33Sf3+_)Rt$acN@sM;z5jp&@Q7Az4&8rRMu8xn0BSC-G~DQE5idNF_i)( z4pYuRVy5GBC-o&I?}t=5cI)cO%^zI7xm;bj`tdSY^bujXj*zRA`6%%Nhv;R@M!y9) zk5UeoQ5ShdV|g|{#9gou+l#Nr?_k_WU&S9razFNH9tq{-0UMV(F7LJN%eb(uGQa10{>K#a4?=Zly@WrahT<*D&uD}9Z@eE$P? CmaT38 diff --git a/Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-38.pyc b/Evaluation/HumanEval/human_eval/__pycache__/evaluation.cpython-38.pyc deleted file mode 100644 index c9bac934d1e601898237274a4deae09116fa345c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 7842 zcmbVRO^_Q`Uhmi4l3E|5(P-rPw$ru~uVrG5^R)@~tdp!gv6FQsUfW@z*+gmU^=M>C z-I~{}#M87`$aq=jki|e1MHLP;Qw3Y3iX$hA;zzV(%9@h(RHxXT zwx+u!tAuu%XF4<8vQ?IKqchvBSQXT>Jje6Az^8bTPxBI=;blI{EBpwbi!<040uRHVjE%5UXHGYAw-Ah@E&XTk2tT@Yyij%o>bW_83X`-#7 zy-Xwg8xM7Uk-vIRw~p~|^KbG?_n7q*u$j)nqQWmfRQWo81Ea?|<5&1q{w9A5wKV@0 zzt+_FYx4K{W?oXT?3|F_WZjbv{pR`G5A%G3zXPhC=Io|Yz43_daHGm%b_RtWZ1XO@ zdG2i5{Z7DJji9Q=#W~(8vVc%al!WM4X@klIDx|-;m#GzEBFBbyY)N1 z=XTJZX>2)-HsFMC8iDKhewc4{d!7i)t{rTJ*rlKikd>}hzN4%TUTt{)bLeOr#*+aAr??7NL*PVr#e_P08%+aq|l-^HQ_ z7-h?}ebeoQQ^Oh9W6N!Zl}+Jw&0wd8hB+KM6E4c$2|`9gu})i#Gs$#6);7C=MXiSC zeu$ID*5cIdoxt(qv~Zfv-CnHwIH@p8^HzoJ@-WvBJH5bL?edqx^2wIl==8a><_8=* zsBK*gXGeW@r|F4Su+_a7mPVa~h`?q>J($|^sA~-LAx_W}lRXK=lhYcVR<{-Shq?}+ z#&oqj^no1?f!V%~Yr7cE^?f?Hn>&8sbZZ;^t|M9v|3bKUsQ+@yZn{7thmIc_x-`D* z+7-v8=@-KCA&_e=cl+_aTh86!LU{5J+)eN_4r`}&Ngi)g*uAZt3spT%_jZCU&yCfl z7i*1PFIF4ArCqvy-BPc3vHq6*p&jR_yx9<~UJ$3ROZaL^%t9bU8AYt$At?2ZFJ`Ej z-RgI3*ZI)yRJAw@rnc*wt&S5HsOmdG9USEl2LyfLHZ)8*cv7escrW4g@1lrQ&e~Zq z7ohfs(3qd8y9_!{i`X99SK4W@6+sWT4RI?_?`V6vEK@;xpY5}OCR>?E<2p}~{^Z7f zdLT9CJtZ(AWtUyXJJ8(%&qoaS3!iBpvq*>5my-gFFYx^}hZ6hq5^|!ph#C8KPL9JF3OW04S)@osXbUtVACMTv7`fzd7Ur#Qj zCY4OB88%4y96Ty2I^LUj{W%mZB~soi4p;;uw5UYv_tb6L0*f<5QN6`KSD@k4+Bt|I zI)sTiviM?i^&_WkpS{CZd&1+Z5YxbJfzSNaaI3%F+OoY>?tFN*(d*;u^nAx@pKW;D z5v%LC-M&qmU%g7VP3=`lf1NIVm5OA%*4v45YoumLmtK6As7|9uD=OX)r)l&0@OW!$ z9j{?`{EM~mgfM$KVVm=2IBmLgru`o2SBKZC**MjMstV#%$NR_;vFiD;-jhm*w}fj$ z;biRFzU(pTk`3#1@T=Ey1u+`fc$rRP1%+im71rt2tOA5ZIBrlMqDlxDADlP|__#1h z`W5u}Bn^sTup%okgH_lZtEdH4)X)o2%S-$=85BQh46R1Y+Tti+4#@&tF`X01hu=XF zBtOO(Y^ch$d-^9zphoE3RmHgg+>d%HV!Lc#9cbfr9Ar>**zgY?HN$WR|7!`RFI zK=}dNR7p1O89^?BOzo;95Bp>_)8SRg$m>u{(5a4Z_Mp~YYZIS4c4Nx~!`$vT-9rKq zY@ws&qR+I2uy+z!z|NT)vxayMn|N}cv_JB@Bs-r+B?1dCK;GMmD3Jx{EKv5a>qx~H z`=wE?&I69heRWw`Q1;OWs@%;O%B7+aKm+Hbqk!-|i8|JC$R5kHDhQte0$PJlPlZ9l8tdpFWCpZQqrz?7a z=`4I^IO2e-e7|l7_4b(GN3#xzI-L#iz$~G98by;tedW9AfDP39xOuv5(v7?9KHJrP zM+&|q2GXxVEfBnV z4cJUun`{pc?UkQ{`yMb9+G*gv{TS{$7?}cY6~;U{(IU=ZDoR7x zr+5a+3@3_tKN_DYwZ^CV#3?3Nrhz5fR0c(yM@dq9aWEZCN7;4;^M4Xe?`eDn=UN6_ zDJt<Y(|IMDhD%WSOxtHn!OqYN8aF7g+Ee&EU%014#YAD^CKho!Gf`Ha z+RX5V(u8q*TZ5dtFobw=gyR&Jn^Pt0mxuoI)G>U1vDNpT<2nui=D zT3l+)LgFCJD~Xn@GVulxXQHU8QcK3HmuM5}liEa(J^B;8Lxrd+;Ti0ij;%g+)`--x zCLb%sFIY9!Mc)s?ncSv}aIoc`uKt>tGY4jl;?G70HicX$OY3d*HXe~03R7#Zq7kO$ zCl{)(Uc}Koi;;Nh&9|?=bK_S1>iV_o>o?*IlxfF?f=&6oP79Y|_j-=YtCcvN+-7Wm zRI<^&c$4O5T7JEI8y>#VfhFtPO-Ej>xQanR?n|so-|ii%=9BZ6aiBG9z;o~SV&+@J zFtMJ*Lsrg%;TQE@yNQqwrMLwQ)=YAf^@%}*hw!_;L+hENLTc@~uRhfPQ2rJQMK@qV zkEsSTSy6>^r5UWu7T{#*($y-Wo?|7v)Gm!$1+*%12ASXj#*6sPu{2v@C)A}O{2abz z;3_e(iM8M?8x*jR`{+C7(2^5G%3S^gwbBJj4Ahnl{pl(RvY@dtNz0AJCU}hk+neZtojW=bu zNh15!&387gnM7yezl0hBg;*80@dhyyPl$vDT77y+DB(twNFerIw@n z%9Mar;4?Rzkzm|?{KB$pq!8}*#KpfNlyoRM9QyEN5)UWok-FXKObEuojH(eE;8g!3 z1n;rlgq4qV54;;|w!0&~3smsXkzOIE9?@5vYIHo`fhR!j8S%Z3ybV;xCgyc0Trts~ z6q1=rkJIqy7*Bk2UB^{d)Eq9mOjoW7iZT(Etv(_oL;vsT*TUnq+A0MlNlZgJ@$s1K z5jm}ohykj3I6Q8zA0%OJCg}F+h(6-1TmQ%tZG=;Z#E|>&`cRcanH++mi$JAk6PKjS zHHFuAc_8}1mXupj#}eWL6pcKJgXb73S-kRARg{q-3IUjq0^|TeEQJW4s_+KDjBxo2 zfremO|CBvYfBV_Nl(dWbt}>YBsX-|~$PAd7h%93fSkMBNOqAa<_Awhw`)9C8WuB4t zXm&4)P@0jqvzOaf29>BHy^s4mH>d>pJB7U|*sluD?`wl2m{mYjTIN%0N>GF?%ST3( z+ttxiT%&$idp?a2{>R(zM`Y_N2t|&-PR}kXo9V$^G<9b>C~dN6?vK?liCtu|kJRJ)!0ZR`7LIX1OK;+j0fD^?7F;9Q)nH*_p9}xLJ<%3#se`H{gQ_CJ^GKbVb*5(*`s|CAKaX`JHxUIjO|6wO3SbgQ^Ys)5dE zX;YORkGg&4JIYJSx0M^pFGDh#5bsaeCrUI!JOM1{21}G&h7wznX_V#rY;OkCEbmGM zb{`mnBL}Sq>UJ-f+nc|Su}_$+!KVebMffZK7^Md*!*CR->U&1CA~7CCXmgZy;hNab z3T7Rl`MWB3Q{hKt8(63v9fj^X7M_<%ay>~tz_Wp2GG#)PvNRpUe4{Ka1+uo;MKYr^ z)SuJqi5Fu^dp=Cqz)hgs0CZx$Yu`PPXF&!boWDh}1~Pn!$eL1SDbqt9lekXBx2Pb; z$I6ZUDy!VEUC(VH(^2=mPM=%=u}(l)sR76eZ^#HVEK~l8mPkyxPuOPw8BYxp)0m0` z&#gDYxf^}gB}hVn6bYg!f(GHKzzYxyPuj3U9uk=Y=^;sjKq({&c!pk*D(QfyM@daC zmF&r)sg(_N@#%0VJ5Ov&U0;&}}gNk)E1RXetOuoVg{KUb~HkUzxt z(H$RDb(W3 zC0GFph{>{&nS)IuRUfB`w;f+lP%BPR@ii(=Q$cQ`^kCou_HQG7EyzMhiz;5FS{emK z;bcH#&F^<*ye+iS5y*gwU#H@GRQv`Nzexq1k@%Pj@+QYtNxYAyRY({#vHLLZ z2mhgDHv7o(g5G-s1&cUjWYH%i?@>Y0f*ryqwTz+ZM2gN9@FvsAY^!*P+v`?jhH ziufVn`YpnxwtXu*9x!R(6Dm&9=u@M)U(Jwz4Iuw_Q79!H4ua0qFVm`_6;VsWhcwi* z^c2Z~An&sTud<9+g`Y|OC))5*Dg8&#CA`U((t$;^ax91O(g?Q9(yERg@?}qJIm{#v zwM=kwCNN|DoJupq?}MtUwjoo=8&&O%B!5wTM)CkIbjP>!&6WV$08n@+;*|WOB~Br0 z(%VU{`y14sPX5-3v-E#h&89!RB!A^6{@6*FuZ*tk*YQe|sGy2FUbWMlx73e4KjMCHPl}BK;beJkGdWW`CrV zCd_QS2|=(C$t3b|K?2{#-(vDSCRC7#k>rw%HE8yJ$GJ#a&;KzB1Lr&OlXpas0wM%W z#qIsv-+!p(uNeDJb?Pg73#ETZuZ~9kE1iR9&6NL^J*xV%!jUr8RGI#>!eZ{V$|20g R0S!ML&6hn;ILYs){{znG@+JTP diff --git a/Evaluation/HumanEval/human_eval/__pycache__/execution.cpython-38.pyc b/Evaluation/HumanEval/human_eval/__pycache__/execution.cpython-38.pyc deleted file mode 100644 index c9543a69ea0946754cfad6610d2f059aa1a0c0b9..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 13015 zcmcIqYiu0Xb)MJG&MueBhbX@E8p-lwEpjO-w(QD}n3iOjjzr2NWhvX#i{akka>?D9 z^_^K!-0r$S z&Yjs^KCQ@zcQI$~`<{Ewx#ym9=3ejaPD=RoOq{ddUX`SOqs-P{0-4wFcxPovViJ?f zQZ9VUIa%bDoFd+8P8Dx0r-^qg7ZYzir;B$y7Z-0MXNY$qmk{q{E-Bt!xh}kwa%w&t zzdP5>)LfcrxgHkF^)fxz$KttuJO|iOd%!-3XAsYjJv<`WBP{V@oF!S;-B@namX;6M zgDmx-%(_|nu69Sx9i}qY!+P&Z$Q=>6KGrXCM=wk402{a~u>t$o9W`ene~=9#KWHn< z$5C(_ga9#hO!~HCkn};Bsyke8=`Y(_J(z6tpN{ zF07fn<~Sv%D0-o{F9!2!CEqq7IJZj7W@gC|)yOZD?MhZODPWJbeayO{8p?9K83QCDC+>hm z^*2f&w4b~qJ%D2HyY69+Js3bL1wzC|q(=M>M!O+BFTE|zN;g5ejqZ?~ow6H}Q`aOv zy^`dAFJnw1JX*zx=wFtccTv}axkX_bABT`Ad832bdY^NiCEFBI_)i;{ZzZuVd((ao>$)R< zRo+P{mTE{Vao}(Zbn4saM~@UJEwys@)QtnAjW(6@*{;ozunW2KJbys zdWsrEet;dkuQrpNl{S*ghncpbtSfx1!z1TilpjIa&3c+r8%Kdj7x>j5@`=itU7$SZ z=$sI3j_uLrSgTFMjjj$i95duR=J>%LyeIz9x)XvD>V_UtV7$pIX$_c=9o*n|3a;kv4U8j@E)LdD6LKs=}2+~ z{me#NMxCG5|7r_YheNKi<3+hW`d<4e#{CW_qJ0$O8=w0=it+z>3{Iz<96QnGbewG}`1Q2YcaejIz~`C>6bB Q$59}A3^m5 zf9Eq(J>mV?UQ}meKAjcgA1RP>ZTSf{HX;p4CApc#iJ#rc5C0_EPHf*3jWqah`hKjL zYU{fsH-)}Sa_u+NcmGoV!4^*c=BHR_KO}j17q^rA+n+nPll;H-=61OAn7*Q}r}()~ zp)t|(%p>X9#T`Mi(7Z28&d=&w_s!!{vy1Cs4EA?skhi~sv?hn6f6 zo^j#muoaF*mRO2E7gCbN!@AJE+jH0G&L}(E-Zg2?9iI zZ#)TJKG)%;&`;09;_d8n~y?@x7Y#eveRGxvDg_j`Z+QBQ|txy;(gko zq31IiS_iEY3j6VQup7772kd;y#)FU0&A+{CuXOXD{C4;&MvizKdOpr<#NjlD6+?f~ zrsZdm_w+Qpr!;@-F}$a}taHuL*h_7x=;g1rq(boi838l?vzzj!-0X?up@+Q$FQ_-l z^|F_d>x*)I>=oqt+jZnm9f)!V*sI75urD?bqU2x$@f-HqefXRrN9R%}*S9U#-^%%? zmd6_XY?8fxUwJUw9K`v2VMKVv!c)75@rN2ije|o{lTOR=#^7=`n!Ud zbEGl2G29s0m|&M^bz41Ov447nA2Y<>z*wWv7z2$_%y5WZZVVw1@#c`!IE326qIRHh z2>xJCbi$veoF+Aoz*CE%^gl7?87dQ&#M#DS(DNv4S!E+iH;xLQu9u%?Q`<&ACfXcB zd$VCiZBA~H#n6j*i$-?B^p_~Tt~k%KD{ap9^QFii?)BbRKJ@n5p* zp)O(XY|8M9`uH!{4YcWnW{-Sz^0S-Af$uwQeET_UHxWlM*iEY27D36P9Ys+3`J1g( zVKfmv+0_=SB8h1nZ&P=Nm(C=Fz`i{F2?e7{8()*9K(DU(ORfWoNm7uYh*rLUP$kMO z&$HRX1cd~diJ)M8aM3E2ZFb(AL=C5K*(J_hUN>6hfl_qqmoK}fx8&B!%v`WdI|{Rj zpqOPMq-d@#+1xfAyMPFr#n;S=%W7qW;4rp_(3$63Wz3QdRKy@3$`cRe@p`Iam7F{w zmo2)1yc%eft|!K$c;zdB?9FEsZqOpq1*?i6rJV=PRm3utWv?C=eV4sJqd07!7OK^{ zAhsrl+S~7t36>1#`sE@QNb_qwI(U*hz*js@6ZxP?FR9#LR0}IL4Qy{X4B8$Gm zg{qkqA0Yf1!t&nune5r@vc=8%!Pc}jXT@<>BYFIU2vE;Z--0=g&Xn5Gb?XG5yxeYY zj@y>#l0CnFry#vU7o=-WiS);~?O_|*^??>ztK3D@+;Y5C8ybW5E$NiZxj^TZ!`w;` zr+3NmgIL)`8*F24BR-E^U#SvH71zUOizSe{j6M~g+jbD+6{?CAmgv>T?Q+RlD3we8 zS{`3DI17^ADzu5anlHIQk|xcUOO=uzXvDQZx2jd!VL|VF_}Syq?Sfq;R`N3>H{GvW zp4~1Bw5sJVfrl={FV5|1*(yLy3eocdqhhVtKms^o%N15xpt%@3h^=yb8UP-(g(`PR zRq&z5TJXejjC`IHZ$6LyAT*_e{%JH}^DQ}igUWPni;kLr zy6p%A<5;U#s*CE1dkb%G&BHig48AMbL4qVF#3kLPakYdGRhg5Vz8mEdA@}iZiJwEB zzd+zc0>4AxJU}i*gvuAo?t)eJ0@==Wxx7@wfj}$Bb%|PTd$lqY1jv``-?H=at%^d0 zh5AIfaWQAiUZ0!KU!0naQggExqSWhC)47zWoxgfbv`C2Dm6^+PQIktI=L2~$*Cpsy z<@RFfc90MmL7N0=DshJ9QczNYyi}1hC>NqE)Ja~bpQtNQF*h8_g3aV^7&T-jc0?KajeKGZ>Q_&A98ag5V9I^rV{iqi)?p&i8;@UisJ-u{KL z;5t6eT$_8HPm0XG1r<`8Xnh+UCmG-q(U&xAn~67T_*P2!i6u(q>GYpyW0&9_Ozd;hHf$|*T5Csji>WS#!1t|+pGTrxQ<52G$E_sXMkzkEWY`T->^_bX_v zBvE5hUur84$kZ#DJgubU6zUb!=yDok(L05Hy%>l3q|tuA-Y3yJiMa$+(%bupd7?Qn z`v6+@VjksJhL)C0qxI}FhW6=W z?2E&wSls|-*tQ~>=(8tvX+^+g6c}}S^@em1y^?$Iq@Vf-J_?>}U4s~h=-a|zAQ~%) znxo*$epo;{^%!0 zbr1Z36#iqhb$h`8dJK>{sbT|y{DKJ&`5&P*?83N*bJStpwr}sGYzUPC9`7Q6xS}96 zaV24ct|ch=o{8uIa(Hk_L8e?C_h8V5?gORVH1u@wx6`dMR&qbKqc1RjQA3>Tl)#6-Of}K>h`8AC1 zi8R0k)iF)g@|Oda1N^+Bs^T|pl&?qnwp=wdTBO4duj4Y5TBd6Jb7jIDlGc1 z0xSN<1OyUoO!zA(o2Kb$Ws+iu9fcjBh#Den`$vLFHys4EuOZ<}cciA|%Ns;z`N26* zTHa7a+C*Aw;ET)y+!g51JG`aP`7Yi`5#>LYr!%pj?*^G!GfsJJ&WBl4oSF%ebcETr zeK-VkWqvH8o?p3(MHUW&vD9Xo)7zns0=Z*q0_2oaf(fW2e;jp$Rpc z&KUfgMB8r>_;Y|Dp3gJ4kk9k)P|DDC*@fFK4b{Pey8dBn+1PoM-^KH`dMcw9VPga_d4H&Q zN$Nv|B@RZRtZ@vU>l}p6QwU6|xCHhN!jg1E8V%*EaumE&-bW}h{74lYnFsBKgr6NN$~7w~xB1V0275_}%I2iIwvazoz0Lqcvn5}QygV$38i@X5H+)+Jy{lyx^%hAVH& zX%>4KT)^eG9szX$dj;$huwTFf0uBgxP{2U}hXfoJa74gS0S^gySimC!9u@GIfTn=Q z1w0{OIPw!BeNw_l=Dj^4`DHncB^OJvUtg@p#WYnui^gY zt4|ixMD82m4z{r>|AQ*q6w$_o@5l;-k2DSL&$DXEyV)DI7pZrGZ7KWW|E@Sjmg>R zsp-p|<+QGznpoQO%)Dutuv%*{XVy#)Yglk^XU*#l7Kp$~i24|!}|7(5FRH2 zU>d~iOHLRVrEs^kfXI|NgBaK36i!qkX$#-6i1wh4&BSPetOZNNDZ=Zp)8PjP{i4NJ z5l@rP1U)kdxJ+NanxB6YhUmq)Kto8pn$t>Ewvf}8UEseE;F$B=8mGWp)f1t>xW6J8 zm^sbAk4>B-yOxU}UoJ6wW$NnGe138+*A*o%PR>sT210i}tt5!m$avwTm=W~}ThGl; zUieawTD0I2MW%LuxS5c-z*wl2;3+u>z9aC5IO2P_`5S7nc?`ne2LNiIFT&{yltFxt zB4ZR96d^4*XkoNc2ck7x#nwo^f;hpdzXoFhGFC0}cd0YNjD#S)u%$V;lYWIHeM#q{~9d?>G?lUsuRVdA^6V-bPh_Pzh6Sxw@804At80c zgM(At5BD1`w$SD}U=pVFXZVNx;cVkn5TlW+O@B_a;!GtwV;XnT3kf5)ca!Hn>)-m#PQ>X4lB-=rv{tyTh<%5?OXMdDw@P>z!i48HY0TGX zB%@{Z3IikP$mF;*r=9L-zT@)o%ZF9BH!j ikR0#UUze5tO|_i#mo&LIg(KO(qxWk4ef=6z>Hi0f&Ei%7 diff --git a/Evaluation/HumanEval/utils/__pycache__/instruct.cpython-38.pyc b/Evaluation/HumanEval/utils/__pycache__/instruct.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..51b54900072b02e6e58105417c6b7159d0db6e01 GIT binary patch literal 2865 zcmb7FPjB1E6`vVW6h&LM?0924Ep}P7n??a*wFR~d1c5i%IB9mVwS(G=ZiN;ytr^R- zXp$L@99yA!v5Tfa59zrnAoZ5Zev5vCJ@Hhar+fti&Gt7V*-3VDDG9!LGxPrO{r$39 z^$4E+zt+TQm5~4F&6|(Dy^SyXD*z{)Mx;qN;}*A{GhV`p!^_Vt?&73kFb`)_2Ac+^ zsj8E8X0pys*4lHoNd*&(&w*;5Uplp$7XN`h5jKAhQZMtx(^9i!XqG^;%&&mP;dGPK zfA|s>k@doPc&zr4_@#|qofVbcUKF+B;6M~k7;_P;!fK~!-wR{q9|U21tzNgJCYB|D z!q#U^`}5#1=r5+dohWSknF1)Fw;n!t*z~rJQ?c2WVXB&* z7C6D}PlIf)?iNmJER~MYyAOhbwX?!X_tJu?tYG{2K*WE=9E1sjDnyKgIotq2kUm z8L+1$XUm$mJfhqM21x^pTf@>*#5`wz!tIC-?A*%jUA9SZ3O>+R-bK%y@6y-3^)`j2 z=a2p!9f3`J*%Ckp=KrBKpfDM#rJd8iu}AhMc|q#5C}j#Rg;&_h&kA}Z=fGgVSLp> zsP(?lQ(=@f!WbHRZMBjf7v8NX%v3u$NLR0GYjx}#!iY=yA9jRl?e^lf7Gg4P%$oya#O18aj1|d zQu7xyd_kL@Hl!7WvB<^_dJk9fGQbUd7iQ0pm*3(!qt~Pk$QgZ7cjP=UcsY$iRg|LS zv5-Yc!f~RoB7qd#Pr|rflCvO_HGrmTl!g3AR~yutYMU}>D#dO%iP06!pzSE;zUQhs zjx(*8&?Poa-=~-9Jaw6d@s-GE6RsL?j)IL>-0Z=v>e^2 z?&8ZlWLJ)&Kw?|EC^$0^Wiet%VHAW;T_ku(G41SulRLbGwTxAlgZqs3`^p;HyquSZ zr4ji%;qE_>`pVjO@RdI$BQ!fuR&pkD<#KOWL1|P*?1WO1JJ30W05bVCBu*`pywY`m zSBBnrk5cmT3JS~9g)*q9sl1ezPuTC-U}`YkSD=JeP*3R<)Ky*?xOp{qmk6(POY&7- zne3*Q$THzol=!RM<ymEq*-;tPo zMR0z5d=5R;|Cf6#!&o$9{%00d47+))>pY`!n9sg#32dCrVcjChVV7P9wY-M7%-zzK zd~Opp)AgP)X;U(oqojWw9-fDX=XCoSS;ogEibjSFITPNGP&R|PKhAwcCN`nL)Gw_U zWff%IR>%t{>8Z4*nlqhLA)Rz?nI`L?eH^6f^;GCv+uPgyig#`0`X_aurday3tE;R2 z7G&M@pA5Vw16fACy&Tt(FBh>nqXP_=DPVG1158v>cpVW7X$8Q0su~w>O&3V7BU+hIDvUdr zBNDZ;ivbu!k^DfL;jC?J-TC5+!u#x3>l?qhclXZby`q##jK#v)P0%n={CZ#>nffan z-001ZG;ihJQCp}P(@y|&i$_;0ED`g<-bwheZ0KVK{TJPS+({NEZfm`Es%Z?r1bwyzK&XozG7X5A z+4L&4Y0X-qGjy8GForvu`qTqsVKr`~-4eux5GU zX7i_S4dwHRW;)OUsJWSBLyF#mA)KT4AQ#zs{~PaNB!W!%dm>8x1EDivl8M0ggs;1( zcJzw>C8+dCCp;9fp9bx2&=HxR#L=-I#N1!o@YgrCd^B7kad7O%;_*4zia${!h3d)J zM;2VD;TJmm5H}_PO>kCx?}3oQ53@J)n)HN`{K8Hcchf^rm>STChn&|fSbhx9w9N#$ zt@q!F-3L3pFygKAF|8%b*7>l7)Gl~3Ju4AI2SfHu-T_{x_v>Z(3t;l+0ELC&JWf$$ zN)nma7{WKy8O3JuxVH`x-iySlF4Jrkz_l4=uj~>aW&gFEcdX;vx8c8?tF`LFNB;u{ C_S6Uf literal 0 HcmV?d00001 diff --git a/Evaluation/HumanEval/utils/__pycache__/utils.cpython-39.pyc b/Evaluation/HumanEval/utils/__pycache__/utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b016ee28b1030c16901bcf7ccb7b6b0573512bf2 GIT binary patch literal 3485 zcmb7G&2JmW6`z@1F3A-sQMO`9PU8}7>X>dU87o-99dWCfI}#eC4FELH&VuWRJbK@4JM#NPQLcOoyB?GC_e<@Pd)K6BW7FIY!uV9H;!}Pw0|oKyUol52Hj2)O1q@(b+g-n zPT$DzE39ujH?G`h`#1Mewbs>PY6_n=9OG^G;~=};suW&oCDooicM}YS=w^kJ-cAc) zvO;X4fm0NfJAIXzFo9rE5N~t^RvdmLH8lqF<~Cs;%J6rd&>SBA2C7X{OZHa;o%p5X1D#d(fU# zn_&yxccol#St1x>xw;qcAhwWIJ6sjYI#1 z#s)vyP^Q!C$6Z=$9c}4+lyrkATLE&&UvOVjWW9E8G9BF@I{{$teQd~K08VO`Q1gr1 zxA?%7s@H@Le7K}G+1=2#s zK*8^|JUvHPDNCc!6s0J+t8`J)(3C2iNWteelQ3?TG_nQLM*!LtdrT;IDZFr?4X-JS zrdsvFiBaC61tdW+`>2(Ji&`V^>_TTW3{yTNuEsiI0=-|50o zMR`Z*TS=z6Yl|N=90# z;mj$RPUwGN$Eih@S9cij>VZEVBX<0}ib(P)GKN(%m6!7JzWALOP7P}V15TU@?kVcQ zU6<8iC9mg|1tzOoCH*X~PDZr_w#Z~1G5svB$l3>x{?0!K$FW0APD`wqWAjYT%+oH@ zzh&_pXY`wTUfl=fGZu@p4D=7jbevQFe^-z9uo6w%`^+G0A-8Pou!me9r&%`SthmxC};vT2g0+BG`pnkG4R^A?iER+A#SskBaXbN$|M{ha^Ofi$>oFK`Zr zw`K|laWxL#28Bp}Lv=D`Oc-yVbZA6N4>d1{BK-pr!@GF>=114A75>#vRPrxP^N)hey zL*)Mk^c@%fh{t$UXg2A`6`VJi(81$^1lZ zofk^Asp03~&u#!PUO^VA0pb@fKgnI*a2EJ9uZd|PFz50n_kkVf9!4IwG$jpS&#PXmYnZe9t<~gATbH`Z{sii2{Kr~qAJKpJ%Xr1w+$6Bldr|Upz#oHaD zQAYx!#`M6zKa%urqGg7{a}lc3mk3-Y@Cg7_z$EQhj#nL|W)JG8cCRfkkL%1-4R$7< zsNtUzzR|ALm)04Ve;oUY|@JJaHqTUAY|LH`V( zaPW8>XE!97B(kAx{lKcgF8Pk$>{0dsQ#rq#$bO_&DA#8<0V=NG;+b0l