From c6ebdafb134bca45c7776a5d3f4afd4af675448b Mon Sep 17 00:00:00 2001 From: ZHU QIHAO <18811325956@163.com> Date: Tue, 31 Oct 2023 11:11:09 +0800 Subject: [PATCH] Update README.md --- README.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index ee2b7d5..3193a24 100644 --- a/README.md +++ b/README.md @@ -51,8 +51,8 @@ Here give some examples of how to use our model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch -tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) -model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() +tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = "#write a quick sort algorithm" inputs = tokenizer(input_text, return_tensors="pt").cuda() outputs = model.generate(**inputs, max_length=128) @@ -78,8 +78,8 @@ def quick_sort(arr): ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch -tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) -model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() +tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = """def quick_sort(arr): if len(arr) <= 1: return arr @@ -103,8 +103,8 @@ This code will output the following result: #### 3)Repository Level Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM -tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) -model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() +tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True).cuda() input_text = """#utils.py import torch @@ -193,8 +193,8 @@ In the following scenario, the Deepseek-Coder 7B model effectively calls a class #### 4)Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM -tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True) -model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).cuda() +tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True) +model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-7b-base", trust_remote_code=True).cuda() prompt = "write a quick sort algorithm in python." prompt = f"""Below is an instruction that describes a task, paired with an input that provides further context.\nWrite a response that appropriately completes the request.\n\n### Instruction:\nWrite a program to perform the given task.\n\nInput:\n{prompt}\n\n### Response:\n""" inputs = tokenizer.encode(prompt, return_tensors="pt").cuda()