mirror of
https://github.com/deepseek-ai/DeepSeek-Coder.git
synced 2025-04-20 02:29:09 -04:00
Update README.md
This commit is contained in:
parent
108504e6a0
commit
c6e311e9d5
25
README.md
25
README.md
@ -57,9 +57,8 @@ inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
|||||||
outputs = model.generate(**inputs, max_length=128)
|
outputs = model.generate(**inputs, max_length=128)
|
||||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||||
```
|
```
|
||||||
This code will output the following result
|
This code will output the following result:
|
||||||
```python
|
```
|
||||||
|
|
||||||
def quick_sort(arr):
|
def quick_sort(arr):
|
||||||
if len(arr) <= 1:
|
if len(arr) <= 1:
|
||||||
return arr
|
return arr
|
||||||
@ -81,7 +80,7 @@ import torch
|
|||||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||||
device = 2 if torch.cuda.is_available() else -1
|
device = 2 if torch.cuda.is_available() else -1
|
||||||
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||||
inputtext = """<fim_prefix>def quick_sort(arr):
|
input_text = """<fim_prefix>def quick_sort(arr):
|
||||||
if len(arr) <= 1:
|
if len(arr) <= 1:
|
||||||
return arr
|
return arr
|
||||||
pivot = arr[0]
|
pivot = arr[0]
|
||||||
@ -93,18 +92,22 @@ inputtext = """<fim_prefix>def quick_sort(arr):
|
|||||||
else:
|
else:
|
||||||
right.append(arr[i])
|
right.append(arr[i])
|
||||||
return quick_sort(left) + [pivot] + quick_sort(right)<fim_suffix>"""
|
return quick_sort(left) + [pivot] + quick_sort(right)<fim_suffix>"""
|
||||||
inputs = tokenizer(inputtext, return_tensors="pt").to(device)
|
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||||
outputs = model.generate(**inputs, max_length=128)
|
outputs = model.generate(**inputs, max_length=128)
|
||||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(inputtext):])
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
||||||
|
```
|
||||||
|
This code will output the following result:
|
||||||
```
|
```
|
||||||
This code will output the following result
|
|
||||||
```python
|
|
||||||
for i in range(1, len(arr)):
|
for i in range(1, len(arr)):
|
||||||
```
|
```
|
||||||
#### Repository Level Code Completion
|
#### Repository Level Code Completion
|
||||||
```python
|
```python
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b")
|
device = 2 if torch.cuda.is_available() else -1
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||||
|
|
||||||
input_text = """#utils.py
|
input_text = """#utils.py
|
||||||
import torch
|
import torch
|
||||||
from sklearn import datasets
|
from sklearn import datasets
|
||||||
@ -179,8 +182,8 @@ from model import IrisClassifier as Classifier
|
|||||||
def main():
|
def main():
|
||||||
# Model training and evaluation
|
# Model training and evaluation
|
||||||
"""
|
"""
|
||||||
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||||
outputs = model.generate(**inputs, max_length=128)
|
outputs = model.generate(**inputs, max_new_tokens=140)
|
||||||
print(tokenizer.decode(outputs[0]))
|
print(tokenizer.decode(outputs[0]))
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user