mirror of
https://github.com/deepseek-ai/DeepSeek-Coder.git
synced 2025-04-19 18:19:05 -04:00
Update README.md
This commit is contained in:
parent
108504e6a0
commit
c6e311e9d5
25
README.md
25
README.md
@ -57,9 +57,8 @@ inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||
outputs = model.generate(**inputs, max_length=128)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
This code will output the following result
|
||||
```python
|
||||
|
||||
This code will output the following result:
|
||||
```
|
||||
def quick_sort(arr):
|
||||
if len(arr) <= 1:
|
||||
return arr
|
||||
@ -81,7 +80,7 @@ import torch
|
||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||
device = 2 if torch.cuda.is_available() else -1
|
||||
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||
inputtext = """<fim_prefix>def quick_sort(arr):
|
||||
input_text = """<fim_prefix>def quick_sort(arr):
|
||||
if len(arr) <= 1:
|
||||
return arr
|
||||
pivot = arr[0]
|
||||
@ -93,18 +92,22 @@ inputtext = """<fim_prefix>def quick_sort(arr):
|
||||
else:
|
||||
right.append(arr[i])
|
||||
return quick_sort(left) + [pivot] + quick_sort(right)<fim_suffix>"""
|
||||
inputs = tokenizer(inputtext, return_tensors="pt").to(device)
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||
outputs = model.generate(**inputs, max_length=128)
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(inputtext):])
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
||||
```
|
||||
This code will output the following result:
|
||||
```
|
||||
This code will output the following result
|
||||
```python
|
||||
for i in range(1, len(arr)):
|
||||
```
|
||||
#### Repository Level Code Completion
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b")
|
||||
device = 2 if torch.cuda.is_available() else -1
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||
|
||||
input_text = """#utils.py
|
||||
import torch
|
||||
from sklearn import datasets
|
||||
@ -179,8 +182,8 @@ from model import IrisClassifier as Classifier
|
||||
def main():
|
||||
# Model training and evaluation
|
||||
"""
|
||||
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
||||
outputs = model.generate(**inputs, max_length=128)
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||
outputs = model.generate(**inputs, max_new_tokens=140)
|
||||
print(tokenizer.decode(outputs[0]))
|
||||
```
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user