diff --git a/README.md b/README.md index 6a269e5..9bddcdf 100644 --- a/README.md +++ b/README.md @@ -70,7 +70,7 @@ import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda() input_text = "#write a quick sort algorithm" -inputs = tokenizer(input_text, return_tensors="pt").cuda() +inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` @@ -108,7 +108,7 @@ input_text = """<|fim▁begin|>def quick_sort(arr): else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>""" -inputs = tokenizer(input_text, return_tensors="pt").cuda() +inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) ``` @@ -231,7 +231,7 @@ from model import IrisClassifier as Classifier def main(): # Model training and evaluation """ -inputs = tokenizer(input_text, return_tensors="pt").cuda() +inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=140) print(tokenizer.decode(outputs[0])) ```