mirror of
https://github.com/deepseek-ai/DeepSeek-Coder.git
synced 2025-04-20 10:39:05 -04:00
Update README.md
This commit is contained in:
parent
5d772a085c
commit
108504e6a0
34
README.md
34
README.md
@ -52,13 +52,13 @@ import torch
|
|||||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||||
device = 2 if torch.cuda.is_available() else -1
|
device = 2 if torch.cuda.is_available() else -1
|
||||||
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||||
inputs = tokenizer("#write a quick sort algorithm", return_tensors="pt").to(device)
|
input_text = "#write a quick sort algorithm"
|
||||||
|
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
||||||
outputs = model.generate(**inputs, max_length=128)
|
outputs = model.generate(**inputs, max_length=128)
|
||||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||||
```
|
```
|
||||||
This code will output
|
This code will output the following result
|
||||||
```python
|
```python
|
||||||
#write a quick sort algorithm
|
|
||||||
|
|
||||||
def quick_sort(arr):
|
def quick_sort(arr):
|
||||||
if len(arr) <= 1:
|
if len(arr) <= 1:
|
||||||
@ -77,13 +77,29 @@ def quick_sort(arr):
|
|||||||
#### Code Insertion
|
#### Code Insertion
|
||||||
```python
|
```python
|
||||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||||
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b")
|
import torch
|
||||||
device = 0 if torch.cuda.is_available() else -1
|
tokenizer = AutoTokenizer.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True)
|
||||||
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b").to(device)
|
device = 2 if torch.cuda.is_available() else -1
|
||||||
input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
|
model = AutoModelForCausalLM.from_pretrained("deepseek/deepseek-coder-7b-base", trust_remote_code=True).to(device)
|
||||||
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
inputtext = """<fim_prefix>def quick_sort(arr):
|
||||||
|
if len(arr) <= 1:
|
||||||
|
return arr
|
||||||
|
pivot = arr[0]
|
||||||
|
left = []
|
||||||
|
right = []
|
||||||
|
<fim_middle>
|
||||||
|
if arr[i] < pivot:
|
||||||
|
left.append(arr[i])
|
||||||
|
else:
|
||||||
|
right.append(arr[i])
|
||||||
|
return quick_sort(left) + [pivot] + quick_sort(right)<fim_suffix>"""
|
||||||
|
inputs = tokenizer(inputtext, return_tensors="pt").to(device)
|
||||||
outputs = model.generate(**inputs, max_length=128)
|
outputs = model.generate(**inputs, max_length=128)
|
||||||
print(tokenizer.decode(outputs[0]))
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(inputtext):])
|
||||||
|
```
|
||||||
|
This code will output the following result
|
||||||
|
```python
|
||||||
|
for i in range(1, len(arr)):
|
||||||
```
|
```
|
||||||
#### Repository Level Code Completion
|
#### Repository Level Code Completion
|
||||||
```python
|
```python
|
||||||
|
Loading…
Reference in New Issue
Block a user