## How to Fine-tune DeepSeek-Coder-V2 We provide script `finetune_deepseekcoder.py` for users to finetune our models on downstream tasks. The script supports the training with [DeepSpeed](https://github.com/microsoft/DeepSpeed). You need install required packages by: ```bash pip install flash-attn --no-build-isolation pip install -r requirements.txt ``` Please follow [Sample Dataset Format](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) to prepare your training data. You can download the sample dataset from [HuggingFace](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) by: ```bash wget https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1/resolve/main/EvolInstruct-Code-80k.json ``` Each line is a json-serialized string with two required fields `instruction` and `output`. After data preparation, you can use the sample shell script to finetune `deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct`. Remember to specify `DATA_PATH`, `OUTPUT_PATH`. And please choose appropriate hyper-parameters(e.g., `learning_rate`, `per_device_train_batch_size`) according to your scenario. For devices supported by flash_attention, you can refer [here](https://github.com/Dao-AILab/flash-attention). For this configuration, zero_stage needs to be set to 3. ```bash DATA_PATH="" OUTPUT_PATH="" MODEL_PATH="deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct" deepspeed finetune_deepseekcoder.py \ --model_name_or_path $MODEL_PATH \ --data_path $DATA_PATH \ --output_dir $OUTPUT_PATH \ --num_train_epochs 3 \ --model_max_length 1024 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 100 \ --save_total_limit 100 \ --learning_rate 2e-5 \ --warmup_steps 10 \ --logging_steps 1 \ --lr_scheduler_type "cosine" \ --gradient_checkpointing True \ --report_to "tensorboard" \ --deepspeed configs/ds_config_zero3.json \ --bf16 True \ --use_lora False ``` You can also finetune the model with 4/8-bits qlora, feel free to try it. For this configuration, it is possible to run on a single A100 80G GPU, and adjustments can be made according to your resources. ```bash DATA_PATH="" OUTPUT_PATH="" MODEL_PATH="" deepspeed finetune.py \ --model_name_or_path $MODEL_PATH \ --data_path $DATA_PATH \ --output_dir $OUTPUT_PATH \ --num_train_epochs 3 \ --model_max_length 1024 \ --per_device_train_batch_size 16 \ --per_device_eval_batch_size 1 \ --gradient_accumulation_steps 4 \ --evaluation_strategy "no" \ --save_strategy "steps" \ --save_steps 100 \ --save_total_limit 100 \ --learning_rate 2e-5 \ --warmup_steps 10 \ --logging_steps 1 \ --lr_scheduler_type "cosine" \ --gradient_checkpointing True \ --report_to "tensorboard" \ --deepspeed configs/ds_config_zero2_no_offload.json \ --bf16 True \ --use_lora True \ --bits 4 \ --max_grad_norm 0.3 \ --double_quant \ --lora_r 64 \ --lora_alpha 16 \ --quant_type nf4 \ ```